# Properties

 Label 1148.489 Modulus $1148$ Conductor $287$ Order $8$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(1148, base_ring=CyclotomicField(8))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,4,7]))

pari: [g,chi] = znchar(Mod(489,1148))

## Basic properties

 Modulus: $$1148$$ Conductor: $$287$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$8$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{287}(202,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 1148.w

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\zeta_{8})$$ Fixed field: 8.8.467605011588281.1

## Values on generators

$$(575,493,785)$$ → $$(1,-1,e\left(\frac{7}{8}\right))$$

## Values

 $$-1$$ $$1$$ $$3$$ $$5$$ $$9$$ $$11$$ $$13$$ $$15$$ $$17$$ $$19$$ $$23$$ $$25$$ $$1$$ $$1$$ $$e\left(\frac{5}{8}\right)$$ $$-i$$ $$i$$ $$e\left(\frac{5}{8}\right)$$ $$e\left(\frac{5}{8}\right)$$ $$e\left(\frac{3}{8}\right)$$ $$e\left(\frac{3}{8}\right)$$ $$e\left(\frac{3}{8}\right)$$ $$-1$$ $$-1$$
 value at e.g. 2