sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(114, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([9,11]))
pari:[g,chi] = znchar(Mod(53,114))
\(\chi_{114}(29,\cdot)\)
\(\chi_{114}(41,\cdot)\)
\(\chi_{114}(53,\cdot)\)
\(\chi_{114}(59,\cdot)\)
\(\chi_{114}(71,\cdot)\)
\(\chi_{114}(89,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((77,97)\) → \((-1,e\left(\frac{11}{18}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 114 }(53, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{18}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)