Properties

Label 1120.797
Modulus $1120$
Conductor $1120$
Order $8$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1120, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([0,3,2,4]))
 
Copy content pari:[g,chi] = znchar(Mod(797,1120))
 

Basic properties

Modulus: \(1120\)
Conductor: \(1120\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(8\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1120.cn

\(\chi_{1120}(237,\cdot)\) \(\chi_{1120}(293,\cdot)\) \(\chi_{1120}(797,\cdot)\) \(\chi_{1120}(853,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: 8.8.80564191232000000.5

Values on generators

\((351,421,897,801)\) → \((1,e\left(\frac{3}{8}\right),i,-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 1120 }(797, a) \) \(1\)\(1\)\(e\left(\frac{3}{8}\right)\)\(-i\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{7}{8}\right)\)\(i\)\(e\left(\frac{5}{8}\right)\)\(1\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{5}{8}\right)\)\(-1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1120 }(797,a) \;\) at \(\;a = \) e.g. 2