Properties

Label 112.j
Modulus $112$
Conductor $112$
Order $4$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([2,1,2])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(27,112)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(112\)
Conductor: \(112\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(4\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.4.100352.1

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(23\) \(25\)
\(\chi_{112}(27,\cdot)\) \(1\) \(1\) \(-i\) \(-i\) \(-1\) \(-i\) \(i\) \(-1\) \(-1\) \(-i\) \(1\) \(-1\)
\(\chi_{112}(83,\cdot)\) \(1\) \(1\) \(i\) \(i\) \(-1\) \(i\) \(-i\) \(-1\) \(-1\) \(i\) \(1\) \(-1\)