sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1110, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([0,9,7]))
pari:[g,chi] = znchar(Mod(103,1110))
\(\chi_{1110}(97,\cdot)\)
\(\chi_{1110}(103,\cdot)\)
\(\chi_{1110}(637,\cdot)\)
\(\chi_{1110}(643,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((371,667,631)\) → \((1,-i,e\left(\frac{7}{12}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(41\) | \(43\) |
| \( \chi_{ 1110 }(103, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(1\) | \(-i\) | \(i\) | \(e\left(\frac{1}{6}\right)\) | \(1\) |
sage:chi.jacobi_sum(n)