sage: H = DirichletGroup(1110)
pari: g = idealstar(,1110,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 288 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{36}\times C_{4}\times C_{2}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{1110}(371,\cdot)$, $\chi_{1110}(667,\cdot)$, $\chi_{1110}(631,\cdot)$ |
First 32 of 288 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(41\) | \(43\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1110}(1,\cdot)\) | 1110.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{1110}(7,\cdot)\) | 1110.ca | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(-i\) |
\(\chi_{1110}(11,\cdot)\) | 1110.w | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(1\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) |
\(\chi_{1110}(13,\cdot)\) | 1110.ch | 36 | no | \(1\) | \(1\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-i\) | \(e\left(\frac{11}{18}\right)\) | \(-1\) |
\(\chi_{1110}(17,\cdot)\) | 1110.cb | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(e\left(\frac{8}{9}\right)\) | \(1\) |
\(\chi_{1110}(19,\cdot)\) | 1110.cf | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(e\left(\frac{17}{18}\right)\) | \(-i\) |
\(\chi_{1110}(23,\cdot)\) | 1110.bm | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(1\) | \(-i\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) |
\(\chi_{1110}(29,\cdot)\) | 1110.bo | 12 | no | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(-i\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(i\) |
\(\chi_{1110}(31,\cdot)\) | 1110.t | 4 | no | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-i\) | \(-i\) | \(-i\) | \(-i\) | \(i\) | \(i\) | \(-1\) | \(-i\) |
\(\chi_{1110}(41,\cdot)\) | 1110.bs | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{11}{18}\right)\) | \(-1\) |
\(\chi_{1110}(43,\cdot)\) | 1110.l | 4 | no | \(1\) | \(1\) | \(-i\) | \(-1\) | \(-1\) | \(1\) | \(-i\) | \(-1\) | \(i\) | \(-i\) | \(-1\) | \(-1\) |
\(\chi_{1110}(47,\cdot)\) | 1110.bh | 12 | no | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(-1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) |
\(\chi_{1110}(49,\cdot)\) | 1110.bq | 18 | no | \(1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(-1\) |
\(\chi_{1110}(53,\cdot)\) | 1110.cd | 36 | no | \(1\) | \(1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(i\) |
\(\chi_{1110}(59,\cdot)\) | 1110.by | 36 | no | \(1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(e\left(\frac{2}{9}\right)\) | \(-i\) |
\(\chi_{1110}(61,\cdot)\) | 1110.ce | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(i\) | \(e\left(\frac{11}{18}\right)\) | \(-i\) |
\(\chi_{1110}(67,\cdot)\) | 1110.bx | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{7}{9}\right)\) | \(i\) |
\(\chi_{1110}(71,\cdot)\) | 1110.bv | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(1\) |
\(\chi_{1110}(73,\cdot)\) | 1110.r | 4 | no | \(-1\) | \(1\) | \(-i\) | \(1\) | \(-i\) | \(i\) | \(1\) | \(-i\) | \(1\) | \(-1\) | \(1\) | \(-i\) |
\(\chi_{1110}(77,\cdot)\) | 1110.cg | 36 | no | \(1\) | \(1\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{17}{18}\right)\) | \(i\) |
\(\chi_{1110}(79,\cdot)\) | 1110.cf | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(e\left(\frac{5}{18}\right)\) | \(-i\) |
\(\chi_{1110}(83,\cdot)\) | 1110.cd | 36 | no | \(1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(i\) |
\(\chi_{1110}(89,\cdot)\) | 1110.by | 36 | no | \(1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(i\) | \(e\left(\frac{2}{9}\right)\) | \(i\) |
\(\chi_{1110}(91,\cdot)\) | 1110.ce | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(e\left(\frac{7}{18}\right)\) | \(i\) |
\(\chi_{1110}(97,\cdot)\) | 1110.bf | 12 | no | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(1\) | \(i\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(1\) |
\(\chi_{1110}(101,\cdot)\) | 1110.w | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(1\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) |
\(\chi_{1110}(103,\cdot)\) | 1110.bf | 12 | no | \(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(1\) | \(-i\) | \(i\) | \(e\left(\frac{1}{6}\right)\) | \(1\) |
\(\chi_{1110}(107,\cdot)\) | 1110.cd | 36 | no | \(1\) | \(1\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(-i\) |
\(\chi_{1110}(109,\cdot)\) | 1110.cf | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{18}\right)\) | \(-i\) |
\(\chi_{1110}(113,\cdot)\) | 1110.cb | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(e\left(\frac{5}{9}\right)\) | \(1\) |
\(\chi_{1110}(119,\cdot)\) | 1110.bo | 12 | no | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(i\) | \(i\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) |
\(\chi_{1110}(121,\cdot)\) | 1110.i | 3 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) |