Properties

Label 11.c
Modulus $11$
Conductor $11$
Order $5$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(11, base_ring=CyclotomicField(10))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([8]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(3,11))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(11\)
Conductor: \(11\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(5\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: \(\Q(\zeta_{11})^+\)

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\)
\(\chi_{11}(3,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{11}(4,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{5}\right)\)
\(\chi_{11}(5,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{5}\right)\)
\(\chi_{11}(9,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{5}\right)\)