sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(11)
sage: chi = H[2]
pari: [g,chi] = znchar(Mod(2,11))
Basic properties
sage: chi.conductor()
pari: znconreyconductor(g,chi)
| ||
Conductor | = | 11 |
sage: chi.multiplicative_order()
pari: charorder(g,chi)
| ||
Order | = | 10 |
Real | = | No |
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
| ||
Primitive | = | Yes |
sage: chi.is_odd()
pari: zncharisodd(g,chi)
| ||
Parity | = | Odd |
Orbit label | = | 11.d |
Orbit index | = | 4 |
Galois orbit
sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(\chi_{11}(2,\cdot)\) \(\chi_{11}(6,\cdot)\) \(\chi_{11}(7,\cdot)\) \(\chi_{11}(8,\cdot)\)
Values on generators
\(2\) → \(e\left(\frac{1}{10}\right)\)
Values
-1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
\(-1\) | \(1\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) |
Related number fields
Field of values | \(\Q(\zeta_{5})\) |
Gauss sum
sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{11}(2,\cdot)) = \sum_{r\in \Z/11\Z} \chi_{11}(2,r) e\left(\frac{2r}{11}\right) = 1.0939895866+3.1310041176i \)
Jacobi sum
sage: chi.sage_character().jacobi_sum(n)
\( \displaystyle J(\chi_{11}(2,\cdot),\chi_{11}(1,\cdot)) = \sum_{r\in \Z/11\Z} \chi_{11}(2,r) \chi_{11}(1,1-r) = -1 \)
Kloosterman sum
sage: chi.sage_character().kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{11}(2,·))
= \sum_{r \in \Z/11\Z}
\chi_{11}(2,r) e\left(\frac{1 r + 2 r^{-1}}{11}\right)
= -0.7708063456+2.3722980003i \)