Properties

Label 1083.t
Modulus $1083$
Conductor $1083$
Order $114$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1083, base_ring=CyclotomicField(114)) M = H._module chi = DirichletCharacter(H, M([57,1])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(8,1083)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1083\)
Conductor: \(1083\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(114\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{57})$
Fixed field: Number field defined by a degree 114 polynomial (not computed)

First 31 of 36 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{1083}(8,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{61}{114}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{5}{114}\right)\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{101}{114}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{2}{57}\right)\)
\(\chi_{1083}(50,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{107}{114}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{91}{114}\right)\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{37}{114}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{25}{57}\right)\)
\(\chi_{1083}(65,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{7}{114}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{23}{114}\right)\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{77}{114}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{32}{57}\right)\)
\(\chi_{1083}(107,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{71}{114}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{103}{114}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{97}{114}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{7}{57}\right)\)
\(\chi_{1083}(122,\cdot)\) \(1\) \(1\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{67}{114}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{41}{114}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{53}{114}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{5}{57}\right)\)
\(\chi_{1083}(164,\cdot)\) \(1\) \(1\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{35}{114}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{1}{114}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{43}{114}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{46}{57}\right)\)
\(\chi_{1083}(179,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{13}{114}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{59}{114}\right)\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{29}{114}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{35}{57}\right)\)
\(\chi_{1083}(221,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{113}{114}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{13}{114}\right)\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{103}{114}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{28}{57}\right)\)
\(\chi_{1083}(236,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{73}{114}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{77}{114}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{5}{114}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{8}{57}\right)\)
\(\chi_{1083}(278,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{77}{114}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{25}{114}\right)\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{49}{114}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{10}{57}\right)\)
\(\chi_{1083}(335,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{41}{114}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{37}{114}\right)\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{109}{114}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{49}{57}\right)\)
\(\chi_{1083}(350,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{79}{114}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{113}{114}\right)\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{71}{114}\right)\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{11}{57}\right)\)
\(\chi_{1083}(392,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{5}{114}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{49}{114}\right)\) \(e\left(\frac{33}{38}\right)\) \(e\left(\frac{55}{114}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{31}{57}\right)\)
\(\chi_{1083}(407,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{25}{114}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{17}{114}\right)\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{47}{114}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{41}{57}\right)\)
\(\chi_{1083}(449,\cdot)\) \(1\) \(1\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{83}{114}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{61}{114}\right)\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{1}{114}\right)\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{13}{57}\right)\)
\(\chi_{1083}(464,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{85}{114}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{35}{114}\right)\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{23}{114}\right)\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{14}{57}\right)\)
\(\chi_{1083}(506,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{47}{114}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{73}{114}\right)\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{61}{114}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{52}{57}\right)\)
\(\chi_{1083}(521,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{31}{114}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{53}{114}\right)\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{113}{114}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{44}{57}\right)\)
\(\chi_{1083}(563,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{11}{114}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{85}{114}\right)\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{7}{114}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{34}{57}\right)\)
\(\chi_{1083}(578,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{91}{114}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{71}{114}\right)\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{89}{114}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{17}{57}\right)\)
\(\chi_{1083}(620,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{89}{114}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{97}{114}\right)\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{67}{114}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{16}{57}\right)\)
\(\chi_{1083}(635,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{37}{114}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{89}{114}\right)\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{65}{114}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{47}{57}\right)\)
\(\chi_{1083}(677,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{53}{114}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{109}{114}\right)\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{13}{114}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{55}{57}\right)\)
\(\chi_{1083}(692,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{97}{114}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{107}{114}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{41}{114}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{20}{57}\right)\)
\(\chi_{1083}(734,\cdot)\) \(1\) \(1\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{17}{114}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{7}{114}\right)\) \(e\left(\frac{21}{38}\right)\) \(e\left(\frac{73}{114}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{37}{57}\right)\)
\(\chi_{1083}(749,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{43}{114}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{11}{114}\right)\) \(e\left(\frac{33}{38}\right)\) \(e\left(\frac{17}{114}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{50}{57}\right)\)
\(\chi_{1083}(806,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{103}{114}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{29}{114}\right)\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{107}{114}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{23}{57}\right)\)
\(\chi_{1083}(848,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{59}{114}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{31}{114}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{79}{114}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{1}{57}\right)\)
\(\chi_{1083}(863,\cdot)\) \(1\) \(1\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{49}{114}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{47}{114}\right)\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{83}{114}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{53}{57}\right)\)
\(\chi_{1083}(905,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{23}{114}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{43}{114}\right)\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{25}{114}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{40}{57}\right)\)
\(\chi_{1083}(920,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{109}{114}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{65}{114}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{59}{114}\right)\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{26}{57}\right)\)