sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1083, base_ring=CyclotomicField(342))
M = H._module
chi = DirichletCharacter(H, M([171,217]))
pari:[g,chi] = znchar(Mod(287,1083))
Modulus: | \(1083\) | |
Conductor: | \(1083\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(342\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1083}(2,\cdot)\)
\(\chi_{1083}(14,\cdot)\)
\(\chi_{1083}(29,\cdot)\)
\(\chi_{1083}(32,\cdot)\)
\(\chi_{1083}(41,\cdot)\)
\(\chi_{1083}(53,\cdot)\)
\(\chi_{1083}(59,\cdot)\)
\(\chi_{1083}(71,\cdot)\)
\(\chi_{1083}(86,\cdot)\)
\(\chi_{1083}(89,\cdot)\)
\(\chi_{1083}(98,\cdot)\)
\(\chi_{1083}(110,\cdot)\)
\(\chi_{1083}(128,\cdot)\)
\(\chi_{1083}(143,\cdot)\)
\(\chi_{1083}(146,\cdot)\)
\(\chi_{1083}(155,\cdot)\)
\(\chi_{1083}(167,\cdot)\)
\(\chi_{1083}(173,\cdot)\)
\(\chi_{1083}(185,\cdot)\)
\(\chi_{1083}(200,\cdot)\)
\(\chi_{1083}(203,\cdot)\)
\(\chi_{1083}(212,\cdot)\)
\(\chi_{1083}(224,\cdot)\)
\(\chi_{1083}(230,\cdot)\)
\(\chi_{1083}(242,\cdot)\)
\(\chi_{1083}(257,\cdot)\)
\(\chi_{1083}(260,\cdot)\)
\(\chi_{1083}(269,\cdot)\)
\(\chi_{1083}(281,\cdot)\)
\(\chi_{1083}(287,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((362,724)\) → \((-1,e\left(\frac{217}{342}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\( \chi_{ 1083 }(287, a) \) |
\(1\) | \(1\) | \(e\left(\frac{23}{171}\right)\) | \(e\left(\frac{46}{171}\right)\) | \(e\left(\frac{241}{342}\right)\) | \(e\left(\frac{10}{57}\right)\) | \(e\left(\frac{23}{57}\right)\) | \(e\left(\frac{287}{342}\right)\) | \(e\left(\frac{25}{114}\right)\) | \(e\left(\frac{257}{342}\right)\) | \(e\left(\frac{53}{171}\right)\) | \(e\left(\frac{92}{171}\right)\) |
sage:chi.jacobi_sum(n)