Properties

Label 1080.133
Modulus $1080$
Conductor $1080$
Order $36$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1080, base_ring=CyclotomicField(36)) M = H._module chi = DirichletCharacter(H, M([0,18,20,27]))
 
Copy content pari:[g,chi] = znchar(Mod(133,1080))
 

Basic properties

Modulus: \(1080\)
Conductor: \(1080\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(36\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1080.cn

\(\chi_{1080}(13,\cdot)\) \(\chi_{1080}(133,\cdot)\) \(\chi_{1080}(157,\cdot)\) \(\chi_{1080}(277,\cdot)\) \(\chi_{1080}(373,\cdot)\) \(\chi_{1080}(493,\cdot)\) \(\chi_{1080}(517,\cdot)\) \(\chi_{1080}(637,\cdot)\) \(\chi_{1080}(733,\cdot)\) \(\chi_{1080}(853,\cdot)\) \(\chi_{1080}(877,\cdot)\) \(\chi_{1080}(997,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: Number field defined by a degree 36 polynomial

Values on generators

\((271,541,1001,217)\) → \((1,-1,e\left(\frac{5}{9}\right),-i)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 1080 }(133, a) \) \(-1\)\(1\)\(e\left(\frac{23}{36}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{7}{36}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{13}{36}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{4}{9}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1080 }(133,a) \;\) at \(\;a = \) e.g. 2