Properties

Modulus $108$
Structure \(C_{18}\times C_{2}\)
Order $36$

Learn more

Show commands for: Pari/GP / SageMath

sage: H = DirichletGroup(108)
 
pari: g = idealstar(,108,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 36
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{18}\times C_{2}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{108}(55,\cdot)$, $\chi_{108}(29,\cdot)$

First 32 of 36 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\)
\(\chi_{108}(1,\cdot)\) 108.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{108}(5,\cdot)\) 108.k 18 no \(-1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{108}(7,\cdot)\) 108.j 18 yes \(-1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{108}(11,\cdot)\) 108.l 18 yes \(1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{108}(13,\cdot)\) 108.i 9 no \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{108}(17,\cdot)\) 108.g 6 no \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{108}(19,\cdot)\) 108.f 6 no \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{108}(23,\cdot)\) 108.l 18 yes \(1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{108}(25,\cdot)\) 108.i 9 no \(1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{108}(29,\cdot)\) 108.k 18 no \(-1\) \(1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{108}(31,\cdot)\) 108.j 18 yes \(-1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{108}(35,\cdot)\) 108.h 6 no \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{108}(37,\cdot)\) 108.e 3 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{108}(41,\cdot)\) 108.k 18 no \(-1\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{108}(43,\cdot)\) 108.j 18 yes \(-1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{108}(47,\cdot)\) 108.l 18 yes \(1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{108}(49,\cdot)\) 108.i 9 no \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{108}(53,\cdot)\) 108.c 2 no \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\)
\(\chi_{108}(55,\cdot)\) 108.d 2 no \(-1\) \(1\) \(1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\)
\(\chi_{108}(59,\cdot)\) 108.l 18 yes \(1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{108}(61,\cdot)\) 108.i 9 no \(1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{108}(65,\cdot)\) 108.k 18 no \(-1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{108}(67,\cdot)\) 108.j 18 yes \(-1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{108}(71,\cdot)\) 108.h 6 no \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{108}(73,\cdot)\) 108.e 3 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{108}(77,\cdot)\) 108.k 18 no \(-1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{108}(79,\cdot)\) 108.j 18 yes \(-1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{108}(83,\cdot)\) 108.l 18 yes \(1\) \(1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{108}(85,\cdot)\) 108.i 9 no \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{108}(89,\cdot)\) 108.g 6 no \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{108}(91,\cdot)\) 108.f 6 no \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{108}(95,\cdot)\) 108.l 18 yes \(1\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{18}\right)\)