Character group
|
| ||
| Order | = | 36 |
|
| ||
| Structure | = | \(C_{2}\times C_{18}\) |
|
| ||
| Generators | = | $\chi_{108}(55,\cdot)$, $\chi_{108}(29,\cdot)$ |
First 32 of 36 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
| Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| \(\chi_{108}(1,\cdot)\) | 108.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
| \(\chi_{108}(5,\cdot)\) | 108.k | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) |
| \(\chi_{108}(7,\cdot)\) | 108.j | 18 | yes | \(-1\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) |
| \(\chi_{108}(11,\cdot)\) | 108.l | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) |
| \(\chi_{108}(13,\cdot)\) | 108.i | 9 | no | \(1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) |
| \(\chi_{108}(17,\cdot)\) | 108.g | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) |
| \(\chi_{108}(19,\cdot)\) | 108.f | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) |
| \(\chi_{108}(23,\cdot)\) | 108.l | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) |
| \(\chi_{108}(25,\cdot)\) | 108.i | 9 | no | \(1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) |
| \(\chi_{108}(29,\cdot)\) | 108.k | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) |
| \(\chi_{108}(31,\cdot)\) | 108.j | 18 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) |
| \(\chi_{108}(35,\cdot)\) | 108.h | 6 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) |
| \(\chi_{108}(37,\cdot)\) | 108.e | 3 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
| \(\chi_{108}(41,\cdot)\) | 108.k | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) |
| \(\chi_{108}(43,\cdot)\) | 108.j | 18 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) |
| \(\chi_{108}(47,\cdot)\) | 108.l | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) |
| \(\chi_{108}(49,\cdot)\) | 108.i | 9 | no | \(1\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) |
| \(\chi_{108}(53,\cdot)\) | 108.c | 2 | no | \(-1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(1\) |
| \(\chi_{108}(55,\cdot)\) | 108.d | 2 | no | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(-1\) |
| \(\chi_{108}(59,\cdot)\) | 108.l | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) |
| \(\chi_{108}(61,\cdot)\) | 108.i | 9 | no | \(1\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) |
| \(\chi_{108}(65,\cdot)\) | 108.k | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) |
| \(\chi_{108}(67,\cdot)\) | 108.j | 18 | yes | \(-1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) |
| \(\chi_{108}(71,\cdot)\) | 108.h | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) |
| \(\chi_{108}(73,\cdot)\) | 108.e | 3 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
| \(\chi_{108}(77,\cdot)\) | 108.k | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) |
| \(\chi_{108}(79,\cdot)\) | 108.j | 18 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) |
| \(\chi_{108}(83,\cdot)\) | 108.l | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) |
| \(\chi_{108}(85,\cdot)\) | 108.i | 9 | no | \(1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) |
| \(\chi_{108}(89,\cdot)\) | 108.g | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) |
| \(\chi_{108}(91,\cdot)\) | 108.f | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) |
| \(\chi_{108}(95,\cdot)\) | 108.l | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) |