Properties

Label 1058.105
Modulus $1058$
Conductor $529$
Order $253$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1058, base_ring=CyclotomicField(506))
 
M = H._module
 
chi = DirichletCharacter(H, M([146]))
 
pari: [g,chi] = znchar(Mod(105,1058))
 

Basic properties

Modulus: \(1058\)
Conductor: \(529\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(253\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{529}(105,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1058.g

\(\chi_{1058}(3,\cdot)\) \(\chi_{1058}(9,\cdot)\) \(\chi_{1058}(13,\cdot)\) \(\chi_{1058}(25,\cdot)\) \(\chi_{1058}(27,\cdot)\) \(\chi_{1058}(29,\cdot)\) \(\chi_{1058}(31,\cdot)\) \(\chi_{1058}(35,\cdot)\) \(\chi_{1058}(39,\cdot)\) \(\chi_{1058}(41,\cdot)\) \(\chi_{1058}(49,\cdot)\) \(\chi_{1058}(55,\cdot)\) \(\chi_{1058}(59,\cdot)\) \(\chi_{1058}(71,\cdot)\) \(\chi_{1058}(73,\cdot)\) \(\chi_{1058}(75,\cdot)\) \(\chi_{1058}(77,\cdot)\) \(\chi_{1058}(81,\cdot)\) \(\chi_{1058}(85,\cdot)\) \(\chi_{1058}(87,\cdot)\) \(\chi_{1058}(95,\cdot)\) \(\chi_{1058}(101,\cdot)\) \(\chi_{1058}(105,\cdot)\) \(\chi_{1058}(117,\cdot)\) \(\chi_{1058}(119,\cdot)\) \(\chi_{1058}(121,\cdot)\) \(\chi_{1058}(123,\cdot)\) \(\chi_{1058}(127,\cdot)\) \(\chi_{1058}(131,\cdot)\) \(\chi_{1058}(133,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{253})$
Fixed field: Number field defined by a degree 253 polynomial (not computed)

Values on generators

\(5\) → \(e\left(\frac{73}{253}\right)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 1058 }(105, a) \) \(1\)\(1\)\(e\left(\frac{156}{253}\right)\)\(e\left(\frac{73}{253}\right)\)\(e\left(\frac{56}{253}\right)\)\(e\left(\frac{59}{253}\right)\)\(e\left(\frac{140}{253}\right)\)\(e\left(\frac{208}{253}\right)\)\(e\left(\frac{229}{253}\right)\)\(e\left(\frac{93}{253}\right)\)\(e\left(\frac{248}{253}\right)\)\(e\left(\frac{212}{253}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1058 }(105,a) \;\) at \(\;a = \) e.g. 2