sage: H = DirichletGroup(105222)
pari: g = idealstar(,105222,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 30240 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{6}\times C_{1260}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{105222}(35075,\cdot)$, $\chi_{105222}(40471,\cdot)$, $\chi_{105222}(94147,\cdot)$, $\chi_{105222}(34087,\cdot)$ |
First 32 of 30240 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) | \(37\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{105222}(1,\cdot)\) | 105222.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{105222}(5,\cdot)\) | 105222.vp | 180 | no | \(1\) | \(1\) | \(e\left(\frac{121}{180}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{22}{45}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{59}{90}\right)\) | \(i\) |
\(\chi_{105222}(7,\cdot)\) | 105222.bak | 420 | no | \(1\) | \(1\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{41}{420}\right)\) | \(e\left(\frac{361}{420}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{32}{105}\right)\) | \(e\left(\frac{57}{140}\right)\) | \(e\left(\frac{17}{210}\right)\) | \(e\left(\frac{59}{84}\right)\) |
\(\chi_{105222}(11,\cdot)\) | 105222.bab | 420 | no | \(-1\) | \(1\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{361}{420}\right)\) | \(e\left(\frac{131}{420}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{59}{210}\right)\) | \(e\left(\frac{17}{140}\right)\) | \(e\left(\frac{71}{105}\right)\) | \(e\left(\frac{79}{84}\right)\) |
\(\chi_{105222}(17,\cdot)\) | 105222.sp | 90 | no | \(1\) | \(1\) | \(e\left(\frac{22}{45}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{44}{45}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{105222}(23,\cdot)\) | 105222.ul | 126 | no | \(1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{17}{63}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{37}{126}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{52}{63}\right)\) | \(e\left(\frac{5}{42}\right)\) |
\(\chi_{105222}(25,\cdot)\) | 105222.rt | 90 | no | \(1\) | \(1\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{44}{45}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(-1\) |
\(\chi_{105222}(29,\cdot)\) | 105222.bbq | 630 | no | \(1\) | \(1\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{32}{105}\right)\) | \(e\left(\frac{59}{210}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{37}{126}\right)\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{298}{315}\right)\) | \(e\left(\frac{179}{210}\right)\) | \(e\left(\frac{73}{630}\right)\) | \(e\left(\frac{11}{42}\right)\) |
\(\chi_{105222}(31,\cdot)\) | 105222.bal | 420 | no | \(-1\) | \(1\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{57}{140}\right)\) | \(e\left(\frac{17}{140}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{179}{210}\right)\) | \(e\left(\frac{137}{140}\right)\) | \(e\left(\frac{187}{210}\right)\) | \(e\left(\frac{25}{28}\right)\) |
\(\chi_{105222}(35,\cdot)\) | 105222.bbz | 630 | no | \(1\) | \(1\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{17}{210}\right)\) | \(e\left(\frac{71}{105}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{52}{63}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{73}{630}\right)\) | \(e\left(\frac{187}{210}\right)\) | \(e\left(\frac{232}{315}\right)\) | \(e\left(\frac{20}{21}\right)\) |
\(\chi_{105222}(37,\cdot)\) | 105222.qx | 84 | no | \(1\) | \(1\) | \(i\) | \(e\left(\frac{59}{84}\right)\) | \(e\left(\frac{79}{84}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(-1\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{25}{84}\right)\) |
\(\chi_{105222}(41,\cdot)\) | 105222.zi | 252 | no | \(1\) | \(1\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{17}{126}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{25}{63}\right)\) | \(e\left(\frac{43}{84}\right)\) | \(e\left(\frac{26}{63}\right)\) | \(e\left(\frac{19}{84}\right)\) |
\(\chi_{105222}(43,\cdot)\) | 105222.bcg | 630 | no | \(1\) | \(1\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{179}{210}\right)\) | \(e\left(\frac{19}{210}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{46}{63}\right)\) | \(e\left(\frac{38}{45}\right)\) | \(e\left(\frac{128}{315}\right)\) | \(e\left(\frac{79}{210}\right)\) | \(e\left(\frac{244}{315}\right)\) | \(e\left(\frac{37}{42}\right)\) |
\(\chi_{105222}(47,\cdot)\) | 105222.bdj | 1260 | no | \(-1\) | \(1\) | \(e\left(\frac{83}{180}\right)\) | \(e\left(\frac{229}{420}\right)\) | \(e\left(\frac{239}{420}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{103}{126}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{503}{630}\right)\) | \(e\left(\frac{139}{420}\right)\) | \(e\left(\frac{2}{315}\right)\) | \(e\left(\frac{9}{28}\right)\) |
\(\chi_{105222}(49,\cdot)\) | 105222.xh | 210 | no | \(1\) | \(1\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{41}{210}\right)\) | \(e\left(\frac{151}{210}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{64}{105}\right)\) | \(e\left(\frac{57}{70}\right)\) | \(e\left(\frac{17}{105}\right)\) | \(e\left(\frac{17}{42}\right)\) |
\(\chi_{105222}(53,\cdot)\) | 105222.bbw | 630 | no | \(-1\) | \(1\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{209}{210}\right)\) | \(e\left(\frac{2}{105}\right)\) | \(e\left(\frac{32}{45}\right)\) | \(e\left(\frac{41}{63}\right)\) | \(e\left(\frac{43}{45}\right)\) | \(e\left(\frac{73}{315}\right)\) | \(e\left(\frac{82}{105}\right)\) | \(e\left(\frac{149}{315}\right)\) | \(e\left(\frac{1}{14}\right)\) |
\(\chi_{105222}(55,\cdot)\) | 105222.bba | 630 | no | \(-1\) | \(1\) | \(e\left(\frac{22}{45}\right)\) | \(e\left(\frac{59}{70}\right)\) | \(e\left(\frac{9}{70}\right)\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{11}{126}\right)\) | \(e\left(\frac{44}{45}\right)\) | \(e\left(\frac{29}{315}\right)\) | \(e\left(\frac{127}{210}\right)\) | \(e\left(\frac{209}{630}\right)\) | \(e\left(\frac{4}{21}\right)\) |
\(\chi_{105222}(59,\cdot)\) | 105222.bdn | 1260 | no | \(1\) | \(1\) | \(e\left(\frac{151}{180}\right)\) | \(e\left(\frac{193}{420}\right)\) | \(e\left(\frac{383}{420}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{53}{126}\right)\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{8}{315}\right)\) | \(e\left(\frac{233}{420}\right)\) | \(e\left(\frac{94}{315}\right)\) | \(e\left(\frac{65}{84}\right)\) |
\(\chi_{105222}(61,\cdot)\) | 105222.bba | 630 | no | \(-1\) | \(1\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{69}{70}\right)\) | \(e\left(\frac{39}{70}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{85}{126}\right)\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{184}{315}\right)\) | \(e\left(\frac{107}{210}\right)\) | \(e\left(\frac{229}{630}\right)\) | \(e\left(\frac{8}{21}\right)\) |
\(\chi_{105222}(67,\cdot)\) | 105222.bdc | 1260 | no | \(-1\) | \(1\) | \(e\left(\frac{119}{180}\right)\) | \(e\left(\frac{107}{420}\right)\) | \(e\left(\frac{307}{420}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{50}{63}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{29}{630}\right)\) | \(e\left(\frac{127}{420}\right)\) | \(e\left(\frac{577}{630}\right)\) | \(e\left(\frac{43}{84}\right)\) |
\(\chi_{105222}(73,\cdot)\) | 105222.bcz | 1260 | no | \(-1\) | \(1\) | \(e\left(\frac{37}{180}\right)\) | \(e\left(\frac{71}{420}\right)\) | \(e\left(\frac{31}{420}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{29}{126}\right)\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{191}{315}\right)\) | \(e\left(\frac{221}{420}\right)\) | \(e\left(\frac{118}{315}\right)\) | \(e\left(\frac{13}{28}\right)\) |
\(\chi_{105222}(77,\cdot)\) | 105222.pt | 70 | no | \(-1\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{67}{70}\right)\) | \(e\left(\frac{6}{35}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{41}{70}\right)\) | \(e\left(\frac{37}{70}\right)\) | \(e\left(\frac{53}{70}\right)\) | \(e\left(\frac{9}{14}\right)\) |
\(\chi_{105222}(79,\cdot)\) | 105222.bbk | 630 | no | \(-1\) | \(1\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{62}{105}\right)\) | \(e\left(\frac{67}{105}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{19}{63}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{481}{630}\right)\) | \(e\left(\frac{139}{210}\right)\) | \(e\left(\frac{109}{315}\right)\) | \(e\left(\frac{9}{14}\right)\) |
\(\chi_{105222}(83,\cdot)\) | 105222.bam | 420 | no | \(1\) | \(1\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{111}{140}\right)\) | \(e\left(\frac{81}{140}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{17}{210}\right)\) | \(e\left(\frac{101}{140}\right)\) | \(e\left(\frac{121}{210}\right)\) | \(e\left(\frac{3}{28}\right)\) |
\(\chi_{105222}(85,\cdot)\) | 105222.wg | 180 | no | \(1\) | \(1\) | \(e\left(\frac{29}{180}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{8}{45}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{1}{45}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{105222}(89,\cdot)\) | 105222.bdm | 1260 | no | \(-1\) | \(1\) | \(e\left(\frac{71}{180}\right)\) | \(e\left(\frac{383}{420}\right)\) | \(e\left(\frac{253}{420}\right)\) | \(e\left(\frac{2}{45}\right)\) | \(e\left(\frac{20}{63}\right)\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{283}{315}\right)\) | \(e\left(\frac{223}{420}\right)\) | \(e\left(\frac{193}{630}\right)\) | \(e\left(\frac{13}{84}\right)\) |
\(\chi_{105222}(97,\cdot)\) | 105222.zf | 252 | no | \(-1\) | \(1\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{47}{84}\right)\) | \(e\left(\frac{43}{84}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{58}{63}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{41}{126}\right)\) | \(e\left(\frac{55}{84}\right)\) | \(e\left(\frac{25}{126}\right)\) | \(e\left(\frac{23}{84}\right)\) |
\(\chi_{105222}(101,\cdot)\) | 105222.tz | 126 | no | \(-1\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{31}{126}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{43}{126}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{17}{126}\right)\) | \(e\left(\frac{41}{42}\right)\) |
\(\chi_{105222}(103,\cdot)\) | 105222.nw | 42 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) |
\(\chi_{105222}(107,\cdot)\) | 105222.xa | 210 | no | \(1\) | \(1\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{61}{105}\right)\) | \(e\left(\frac{37}{210}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{6}{35}\right)\) | \(e\left(\frac{39}{70}\right)\) | \(e\left(\frac{1}{70}\right)\) | \(e\left(\frac{5}{42}\right)\) |
\(\chi_{105222}(109,\cdot)\) | 105222.bde | 1260 | no | \(1\) | \(1\) | \(e\left(\frac{139}{180}\right)\) | \(e\left(\frac{377}{420}\right)\) | \(e\left(\frac{277}{420}\right)\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{125}{126}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{619}{630}\right)\) | \(e\left(\frac{17}{420}\right)\) | \(e\left(\frac{211}{315}\right)\) | \(e\left(\frac{1}{28}\right)\) |
\(\chi_{105222}(113,\cdot)\) | 105222.ym | 210 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{169}{210}\right)\) | \(e\left(\frac{82}{105}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{76}{105}\right)\) | \(e\left(\frac{24}{35}\right)\) | \(e\left(\frac{53}{105}\right)\) | \(e\left(\frac{25}{42}\right)\) |