Properties

Modulus 105
Conductor 21
Order 6
Real no
Primitive no
Minimal yes
Parity odd
Orbit label 105.t

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(105)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([3,0,2]))
 
pari: [g,chi] = znchar(Mod(86,105))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Modulus = 105
Conductor = 21
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 6
Real = no
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = no
Minimal = yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = odd
Orbit label = 105.t
Orbit index = 20

Galois orbit

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{105}(11,\cdot)\) \(\chi_{105}(86,\cdot)\)

Values on generators

\((71,22,31)\) → \((-1,1,e\left(\frac{1}{3}\right))\)

Values

-1124811131617192223
\(-1\)\(1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(-1\)\(e\left(\frac{5}{6}\right)\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(1\)\(e\left(\frac{1}{6}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{3})\)

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 105 }(86,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{105}(86,\cdot)) = \sum_{r\in \Z/105\Z} \chi_{105}(86,r) e\left(\frac{2r}{105}\right) = 4.5733760093+0.2902272863i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 105 }(86,·),\chi_{ 105 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{105}(86,\cdot),\chi_{105}(1,\cdot)) = \sum_{r\in \Z/105\Z} \chi_{105}(86,r) \chi_{105}(1,1-r) = 3 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 105 }(86,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{105}(86,·)) = \sum_{r \in \Z/105\Z} \chi_{105}(86,r) e\left(\frac{1 r + 2 r^{-1}}{105}\right) = -0.0 \)