from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1045, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([45,162,100]))
chi.galois_orbit()
[g,chi] = znchar(Mod(17,1045))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(1045\) | |
Conductor: | \(1045\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(180\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{180})$ |
Fixed field: | Number field defined by a degree 180 polynomial (not computed) |
First 31 of 48 characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(13\) | \(14\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1045}(17,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{127}{180}\right)\) | \(e\left(\frac{31}{180}\right)\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{77}{180}\right)\) | \(e\left(\frac{53}{90}\right)\) |
\(\chi_{1045}(28,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{180}\right)\) | \(e\left(\frac{41}{180}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{67}{180}\right)\) | \(e\left(\frac{73}{90}\right)\) |
\(\chi_{1045}(62,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{151}{180}\right)\) | \(e\left(\frac{163}{180}\right)\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{161}{180}\right)\) | \(e\left(\frac{29}{90}\right)\) |
\(\chi_{1045}(63,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{149}{180}\right)\) | \(e\left(\frac{137}{180}\right)\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{79}{180}\right)\) | \(e\left(\frac{31}{90}\right)\) |
\(\chi_{1045}(73,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{121}{180}\right)\) | \(e\left(\frac{133}{180}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{180}\right)\) | \(e\left(\frac{59}{90}\right)\) |
\(\chi_{1045}(112,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{163}{180}\right)\) | \(e\left(\frac{139}{180}\right)\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{113}{180}\right)\) | \(e\left(\frac{17}{90}\right)\) |
\(\chi_{1045}(118,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{180}\right)\) | \(e\left(\frac{17}{180}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{19}{180}\right)\) | \(e\left(\frac{61}{90}\right)\) |
\(\chi_{1045}(123,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{53}{180}\right)\) | \(e\left(\frac{149}{180}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{103}{180}\right)\) | \(e\left(\frac{37}{90}\right)\) |
\(\chi_{1045}(138,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{97}{180}\right)\) | \(e\left(\frac{1}{180}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{107}{180}\right)\) | \(e\left(\frac{83}{90}\right)\) |
\(\chi_{1045}(233,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{133}{180}\right)\) | \(e\left(\frac{109}{180}\right)\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{143}{180}\right)\) | \(e\left(\frac{47}{90}\right)\) |
\(\chi_{1045}(237,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{107}{180}\right)\) | \(e\left(\frac{131}{180}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{157}{180}\right)\) | \(e\left(\frac{73}{90}\right)\) |
\(\chi_{1045}(272,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{59}{180}\right)\) | \(e\left(\frac{47}{180}\right)\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{169}{180}\right)\) | \(e\left(\frac{31}{90}\right)\) |
\(\chi_{1045}(282,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{180}\right)\) | \(e\left(\frac{43}{180}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{101}{180}\right)\) | \(e\left(\frac{59}{90}\right)\) |
\(\chi_{1045}(283,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{109}{180}\right)\) | \(e\left(\frac{157}{180}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{59}{180}\right)\) | \(e\left(\frac{71}{90}\right)\) |
\(\chi_{1045}(327,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{119}{180}\right)\) | \(e\left(\frac{107}{180}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{109}{180}\right)\) | \(e\left(\frac{61}{90}\right)\) |
\(\chi_{1045}(332,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{143}{180}\right)\) | \(e\left(\frac{59}{180}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{13}{180}\right)\) | \(e\left(\frac{37}{90}\right)\) |
\(\chi_{1045}(347,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{180}\right)\) | \(e\left(\frac{91}{180}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{17}{180}\right)\) | \(e\left(\frac{83}{90}\right)\) |
\(\chi_{1045}(348,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{41}{180}\right)\) | \(e\left(\frac{173}{180}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{151}{180}\right)\) | \(e\left(\frac{49}{90}\right)\) |
\(\chi_{1045}(358,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{157}{180}\right)\) | \(e\left(\frac{61}{180}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{47}{180}\right)\) | \(e\left(\frac{23}{90}\right)\) |
\(\chi_{1045}(403,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{101}{180}\right)\) | \(e\left(\frac{53}{180}\right)\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{91}{180}\right)\) | \(e\left(\frac{79}{90}\right)\) |
\(\chi_{1045}(442,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{43}{180}\right)\) | \(e\left(\frac{19}{180}\right)\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{53}{180}\right)\) | \(e\left(\frac{47}{90}\right)\) |
\(\chi_{1045}(453,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{180}\right)\) | \(e\left(\frac{169}{180}\right)\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{83}{180}\right)\) | \(e\left(\frac{77}{90}\right)\) |
\(\chi_{1045}(492,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{180}\right)\) | \(e\left(\frac{67}{180}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{149}{180}\right)\) | \(e\left(\frac{71}{90}\right)\) |
\(\chi_{1045}(503,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{89}{180}\right)\) | \(e\left(\frac{77}{180}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{139}{180}\right)\) | \(e\left(\frac{1}{90}\right)\) |
\(\chi_{1045}(557,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{131}{180}\right)\) | \(e\left(\frac{83}{180}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{61}{180}\right)\) | \(e\left(\frac{49}{90}\right)\) |
\(\chi_{1045}(567,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{67}{180}\right)\) | \(e\left(\frac{151}{180}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{137}{180}\right)\) | \(e\left(\frac{23}{90}\right)\) |
\(\chi_{1045}(568,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{180}\right)\) | \(e\left(\frac{13}{180}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{131}{180}\right)\) | \(e\left(\frac{89}{90}\right)\) |
\(\chi_{1045}(612,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{180}\right)\) | \(e\left(\frac{143}{180}\right)\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{180}\right)\) | \(e\left(\frac{79}{90}\right)\) |
\(\chi_{1045}(613,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{169}{180}\right)\) | \(e\left(\frac{37}{180}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{179}{180}\right)\) | \(e\left(\frac{11}{90}\right)\) |
\(\chi_{1045}(633,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{77}{180}\right)\) | \(e\left(\frac{101}{180}\right)\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{180}\right)\) | \(e\left(\frac{13}{90}\right)\) |
\(\chi_{1045}(662,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{103}{180}\right)\) | \(e\left(\frac{79}{180}\right)\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{173}{180}\right)\) | \(e\left(\frac{77}{90}\right)\) |