sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1045, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([135,126,140]))
pari:[g,chi] = znchar(Mod(348,1045))
Modulus: | \(1045\) | |
Conductor: | \(1045\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(180\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1045}(17,\cdot)\)
\(\chi_{1045}(28,\cdot)\)
\(\chi_{1045}(62,\cdot)\)
\(\chi_{1045}(63,\cdot)\)
\(\chi_{1045}(73,\cdot)\)
\(\chi_{1045}(112,\cdot)\)
\(\chi_{1045}(118,\cdot)\)
\(\chi_{1045}(123,\cdot)\)
\(\chi_{1045}(138,\cdot)\)
\(\chi_{1045}(233,\cdot)\)
\(\chi_{1045}(237,\cdot)\)
\(\chi_{1045}(272,\cdot)\)
\(\chi_{1045}(282,\cdot)\)
\(\chi_{1045}(283,\cdot)\)
\(\chi_{1045}(327,\cdot)\)
\(\chi_{1045}(332,\cdot)\)
\(\chi_{1045}(347,\cdot)\)
\(\chi_{1045}(348,\cdot)\)
\(\chi_{1045}(358,\cdot)\)
\(\chi_{1045}(403,\cdot)\)
\(\chi_{1045}(442,\cdot)\)
\(\chi_{1045}(453,\cdot)\)
\(\chi_{1045}(492,\cdot)\)
\(\chi_{1045}(503,\cdot)\)
\(\chi_{1045}(557,\cdot)\)
\(\chi_{1045}(567,\cdot)\)
\(\chi_{1045}(568,\cdot)\)
\(\chi_{1045}(612,\cdot)\)
\(\chi_{1045}(613,\cdot)\)
\(\chi_{1045}(633,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((837,761,496)\) → \((-i,e\left(\frac{7}{10}\right),e\left(\frac{7}{9}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(13\) | \(14\) |
\( \chi_{ 1045 }(348, a) \) |
\(1\) | \(1\) | \(e\left(\frac{41}{180}\right)\) | \(e\left(\frac{173}{180}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{151}{180}\right)\) | \(e\left(\frac{49}{90}\right)\) |
sage:chi.jacobi_sum(n)