from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1045, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([45,63,85]))
chi.galois_orbit()
[g,chi] = znchar(Mod(29,1045))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(1045\) | |
Conductor: | \(1045\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(90\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{45})$ |
Fixed field: | Number field defined by a degree 90 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(13\) | \(14\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1045}(29,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{13}{45}\right)\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{19}{90}\right)\) |
\(\chi_{1045}(79,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{29}{45}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{77}{90}\right)\) |
\(\chi_{1045}(129,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{38}{45}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{61}{90}\right)\) |
\(\chi_{1045}(184,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{1}{45}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{31}{90}\right)\) |
\(\chi_{1045}(204,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{26}{45}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{83}{90}\right)\) |
\(\chi_{1045}(249,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{29}{45}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{89}{90}\right)\) |
\(\chi_{1045}(299,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{44}{45}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{32}{45}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{47}{90}\right)\) |
\(\chi_{1045}(314,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{44}{45}\right)\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{43}{45}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{73}{90}\right)\) |
\(\chi_{1045}(409,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{26}{45}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{37}{90}\right)\) |
\(\chi_{1045}(414,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{2}{45}\right)\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{79}{90}\right)\) |
\(\chi_{1045}(459,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{13}{45}\right)\) | \(e\left(\frac{2}{45}\right)\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{26}{45}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{41}{90}\right)\) |
\(\chi_{1045}(469,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{32}{45}\right)\) | \(e\left(\frac{43}{45}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{19}{45}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{49}{90}\right)\) |
\(\chi_{1045}(534,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{19}{45}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{38}{45}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{53}{90}\right)\) |
\(\chi_{1045}(629,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{1}{45}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{2}{45}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{17}{90}\right)\) |
\(\chi_{1045}(679,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{43}{45}\right)\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{11}{90}\right)\) |
\(\chi_{1045}(699,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{29}{45}\right)\) | \(e\left(\frac{1}{45}\right)\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{13}{45}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{43}{90}\right)\) |
\(\chi_{1045}(744,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{22}{45}\right)\) | \(e\left(\frac{38}{45}\right)\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{44}{45}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{59}{90}\right)\) |
\(\chi_{1045}(754,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{13}{90}\right)\) |
\(\chi_{1045}(789,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{8}{45}\right)\) | \(e\left(\frac{22}{45}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{1}{90}\right)\) |
\(\chi_{1045}(794,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{11}{45}\right)\) | \(e\left(\frac{19}{45}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{22}{45}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{7}{90}\right)\) |
\(\chi_{1045}(849,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{67}{90}\right)\) |
\(\chi_{1045}(964,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{8}{45}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{29}{90}\right)\) |
\(\chi_{1045}(1009,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{32}{45}\right)\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{11}{45}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{71}{90}\right)\) |
\(\chi_{1045}(1029,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{11}{45}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{8}{45}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{23}{90}\right)\) |