from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1045, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([9,18,16]))
pari: [g,chi] = znchar(Mod(142,1045))
Basic properties
Modulus: | \(1045\) | |
Conductor: | \(1045\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(36\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1045.cb
\(\chi_{1045}(43,\cdot)\) \(\chi_{1045}(142,\cdot)\) \(\chi_{1045}(252,\cdot)\) \(\chi_{1045}(263,\cdot)\) \(\chi_{1045}(472,\cdot)\) \(\chi_{1045}(538,\cdot)\) \(\chi_{1045}(593,\cdot)\) \(\chi_{1045}(747,\cdot)\) \(\chi_{1045}(758,\cdot)\) \(\chi_{1045}(802,\cdot)\) \(\chi_{1045}(967,\cdot)\) \(\chi_{1045}(978,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{36})\) |
Fixed field: | Number field defined by a degree 36 polynomial |
Values on generators
\((837,761,496)\) → \((i,-1,e\left(\frac{4}{9}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(13\) | \(14\) |
\( \chi_{ 1045 }(142, a) \) | \(1\) | \(1\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) |
sage: chi.jacobi_sum(n)