# Properties

 Label 1045.bv Modulus $1045$ Conductor $1045$ Order $30$ Real no Primitive yes Minimal yes Parity even

# Related objects

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1045, base_ring=CyclotomicField(30))

M = H._module

chi = DirichletCharacter(H, M([15,21,5]))

chi.galois_orbit()

[g,chi] = znchar(Mod(84,1045))

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$1045$$ Conductor: $$1045$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$30$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q(\zeta_{15})$$ Fixed field: Number field defined by a degree 30 polynomial

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$6$$ $$7$$ $$8$$ $$9$$ $$12$$ $$13$$ $$14$$
$$\chi_{1045}(84,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{11}{30}\right)$$ $$e\left(\frac{4}{15}\right)$$ $$e\left(\frac{11}{15}\right)$$ $$e\left(\frac{19}{30}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{8}{15}\right)$$ $$1$$ $$e\left(\frac{1}{30}\right)$$ $$e\left(\frac{23}{30}\right)$$
$$\chi_{1045}(259,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{7}{30}\right)$$ $$e\left(\frac{8}{15}\right)$$ $$e\left(\frac{7}{15}\right)$$ $$e\left(\frac{23}{30}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{1}{15}\right)$$ $$1$$ $$e\left(\frac{17}{30}\right)$$ $$e\left(\frac{1}{30}\right)$$
$$\chi_{1045}(354,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{13}{30}\right)$$ $$e\left(\frac{2}{15}\right)$$ $$e\left(\frac{13}{15}\right)$$ $$e\left(\frac{17}{30}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{4}{15}\right)$$ $$1$$ $$e\left(\frac{23}{30}\right)$$ $$e\left(\frac{19}{30}\right)$$
$$\chi_{1045}(369,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{17}{30}\right)$$ $$e\left(\frac{13}{15}\right)$$ $$e\left(\frac{2}{15}\right)$$ $$e\left(\frac{13}{30}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{11}{15}\right)$$ $$1$$ $$e\left(\frac{7}{30}\right)$$ $$e\left(\frac{11}{30}\right)$$
$$\chi_{1045}(464,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{23}{30}\right)$$ $$e\left(\frac{7}{15}\right)$$ $$e\left(\frac{8}{15}\right)$$ $$e\left(\frac{7}{30}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{14}{15}\right)$$ $$1$$ $$e\left(\frac{13}{30}\right)$$ $$e\left(\frac{29}{30}\right)$$
$$\chi_{1045}(734,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{19}{30}\right)$$ $$e\left(\frac{11}{15}\right)$$ $$e\left(\frac{4}{15}\right)$$ $$e\left(\frac{11}{30}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{7}{15}\right)$$ $$1$$ $$e\left(\frac{29}{30}\right)$$ $$e\left(\frac{7}{30}\right)$$
$$\chi_{1045}(844,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{29}{30}\right)$$ $$e\left(\frac{1}{15}\right)$$ $$e\left(\frac{14}{15}\right)$$ $$e\left(\frac{1}{30}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{2}{15}\right)$$ $$1$$ $$e\left(\frac{19}{30}\right)$$ $$e\left(\frac{17}{30}\right)$$
$$\chi_{1045}(1019,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{1}{30}\right)$$ $$e\left(\frac{14}{15}\right)$$ $$e\left(\frac{1}{15}\right)$$ $$e\left(\frac{29}{30}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{13}{15}\right)$$ $$1$$ $$e\left(\frac{11}{30}\right)$$ $$e\left(\frac{13}{30}\right)$$