sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1045, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([15,6,20]))
pari:[g,chi] = znchar(Mod(334,1045))
| Modulus: | \(1045\) | |
| Conductor: | \(1045\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(30\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1045}(49,\cdot)\)
\(\chi_{1045}(64,\cdot)\)
\(\chi_{1045}(159,\cdot)\)
\(\chi_{1045}(334,\cdot)\)
\(\chi_{1045}(444,\cdot)\)
\(\chi_{1045}(619,\cdot)\)
\(\chi_{1045}(729,\cdot)\)
\(\chi_{1045}(999,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((837,761,496)\) → \((-1,e\left(\frac{1}{5}\right),e\left(\frac{2}{3}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(13\) | \(14\) |
| \( \chi_{ 1045 }(334, a) \) |
\(1\) | \(1\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(-1\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{4}{15}\right)\) |
sage:chi.jacobi_sum(n)