from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1045, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([15,2,10]))
pari: [g,chi] = znchar(Mod(398,1045))
Basic properties
Modulus: | \(1045\) | |
Conductor: | \(1045\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(20\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1045.br
\(\chi_{1045}(18,\cdot)\) \(\chi_{1045}(227,\cdot)\) \(\chi_{1045}(303,\cdot)\) \(\chi_{1045}(398,\cdot)\) \(\chi_{1045}(512,\cdot)\) \(\chi_{1045}(607,\cdot)\) \(\chi_{1045}(778,\cdot)\) \(\chi_{1045}(987,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{20})\) |
Fixed field: | Number field defined by a degree 20 polynomial |
Values on generators
\((837,761,496)\) → \((-i,e\left(\frac{1}{10}\right),-1)\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(13\) | \(14\) |
\( \chi_{ 1045 }(398, a) \) | \(-1\) | \(1\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(i\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) |
sage: chi.jacobi_sum(n)