# Properties

 Label 1045.bo Modulus $1045$ Conductor $95$ Order $18$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1045, base_ring=CyclotomicField(18))

M = H._module

chi = DirichletCharacter(H, M([9,0,8]))

chi.galois_orbit()

[g,chi] = znchar(Mod(199,1045))

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$1045$$ Conductor: $$95$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$18$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from 95.p sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q(\zeta_{9})$$ Fixed field: 18.18.563362135874260093126953125.1

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$6$$ $$7$$ $$8$$ $$9$$ $$12$$ $$13$$ $$14$$
$$\chi_{1045}(199,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{13}{18}\right)$$ $$e\left(\frac{1}{9}\right)$$
$$\chi_{1045}(309,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{7}{9}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{2}{9}\right)$$
$$\chi_{1045}(529,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{13}{18}\right)$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{7}{9}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{5}{9}\right)$$
$$\chi_{1045}(804,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{4}{9}\right)$$
$$\chi_{1045}(859,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{7}{9}\right)$$
$$\chi_{1045}(1024,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{13}{18}\right)$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{7}{9}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{8}{9}\right)$$