Basic properties
Modulus: | \(1045\) | |
Conductor: | \(1045\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(90\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1045.cn
\(\chi_{1045}(29,\cdot)\) \(\chi_{1045}(79,\cdot)\) \(\chi_{1045}(129,\cdot)\) \(\chi_{1045}(184,\cdot)\) \(\chi_{1045}(204,\cdot)\) \(\chi_{1045}(249,\cdot)\) \(\chi_{1045}(299,\cdot)\) \(\chi_{1045}(314,\cdot)\) \(\chi_{1045}(409,\cdot)\) \(\chi_{1045}(414,\cdot)\) \(\chi_{1045}(459,\cdot)\) \(\chi_{1045}(469,\cdot)\) \(\chi_{1045}(534,\cdot)\) \(\chi_{1045}(629,\cdot)\) \(\chi_{1045}(679,\cdot)\) \(\chi_{1045}(699,\cdot)\) \(\chi_{1045}(744,\cdot)\) \(\chi_{1045}(754,\cdot)\) \(\chi_{1045}(789,\cdot)\) \(\chi_{1045}(794,\cdot)\) \(\chi_{1045}(849,\cdot)\) \(\chi_{1045}(964,\cdot)\) \(\chi_{1045}(1009,\cdot)\) \(\chi_{1045}(1029,\cdot)\)
Related number fields
Field of values: | $\Q(\zeta_{45})$ |
Fixed field: | Number field defined by a degree 90 polynomial |
Values on generators
\((837,761,496)\) → \((-1,e\left(\frac{3}{10}\right),e\left(\frac{5}{18}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(13\) | \(14\) |
\( \chi_{ 1045 }(184, a) \) | \(1\) | \(1\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{1}{45}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{31}{90}\right)\) |