sage: H = DirichletGroup(1045)
pari: g = idealstar(,1045,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 720 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{180}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{1045}(837,\cdot)$, $\chi_{1045}(761,\cdot)$, $\chi_{1045}(496,\cdot)$ |
First 32 of 720 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(13\) | \(14\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1045}(1,\cdot)\) | 1045.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{1045}(2,\cdot)\) | 1045.cq | 180 | yes | \(-1\) | \(1\) | \(e\left(\frac{73}{180}\right)\) | \(e\left(\frac{49}{180}\right)\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{23}{180}\right)\) | \(e\left(\frac{31}{45}\right)\) |
\(\chi_{1045}(3,\cdot)\) | 1045.cr | 180 | yes | \(1\) | \(1\) | \(e\left(\frac{49}{180}\right)\) | \(e\left(\frac{7}{180}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{119}{180}\right)\) | \(e\left(\frac{43}{45}\right)\) |
\(\chi_{1045}(4,\cdot)\) | 1045.ck | 90 | yes | \(1\) | \(1\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{17}{45}\right)\) |
\(\chi_{1045}(6,\cdot)\) | 1045.cj | 90 | no | \(-1\) | \(1\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{29}{45}\right)\) |
\(\chi_{1045}(7,\cdot)\) | 1045.cf | 60 | yes | \(1\) | \(1\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(i\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{13}{30}\right)\) |
\(\chi_{1045}(8,\cdot)\) | 1045.cg | 60 | yes | \(-1\) | \(1\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(i\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{1}{15}\right)\) |
\(\chi_{1045}(9,\cdot)\) | 1045.ck | 90 | yes | \(1\) | \(1\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{41}{45}\right)\) |
\(\chi_{1045}(12,\cdot)\) | 1045.bd | 12 | no | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(i\) | \(i\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{1045}(13,\cdot)\) | 1045.cq | 180 | yes | \(-1\) | \(1\) | \(e\left(\frac{23}{180}\right)\) | \(e\left(\frac{119}{180}\right)\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{133}{180}\right)\) | \(e\left(\frac{11}{45}\right)\) |
\(\chi_{1045}(14,\cdot)\) | 1045.cl | 90 | yes | \(-1\) | \(1\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{43}{45}\right)\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{29}{45}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{45}\right)\) | \(e\left(\frac{11}{90}\right)\) |
\(\chi_{1045}(16,\cdot)\) | 1045.ce | 45 | no | \(1\) | \(1\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{11}{45}\right)\) | \(e\left(\frac{32}{45}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{8}{45}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{34}{45}\right)\) |
\(\chi_{1045}(17,\cdot)\) | 1045.cs | 180 | yes | \(1\) | \(1\) | \(e\left(\frac{127}{180}\right)\) | \(e\left(\frac{31}{180}\right)\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{77}{180}\right)\) | \(e\left(\frac{53}{90}\right)\) |
\(\chi_{1045}(18,\cdot)\) | 1045.br | 20 | yes | \(-1\) | \(1\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(i\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) |
\(\chi_{1045}(21,\cdot)\) | 1045.bm | 18 | no | \(1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{1045}(23,\cdot)\) | 1045.ca | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{1045}(24,\cdot)\) | 1045.cp | 90 | yes | \(-1\) | \(1\) | \(e\left(\frac{22}{45}\right)\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{44}{45}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{32}{45}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{45}\right)\) | \(e\left(\frac{1}{45}\right)\) |
\(\chi_{1045}(26,\cdot)\) | 1045.bh | 15 | no | \(1\) | \(1\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(1\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{14}{15}\right)\) |
\(\chi_{1045}(27,\cdot)\) | 1045.ci | 60 | yes | \(1\) | \(1\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(-i\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{13}{15}\right)\) |
\(\chi_{1045}(28,\cdot)\) | 1045.cs | 180 | yes | \(1\) | \(1\) | \(e\left(\frac{17}{180}\right)\) | \(e\left(\frac{41}{180}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{67}{180}\right)\) | \(e\left(\frac{73}{90}\right)\) |
\(\chi_{1045}(29,\cdot)\) | 1045.cn | 90 | yes | \(1\) | \(1\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{13}{45}\right)\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{19}{90}\right)\) |
\(\chi_{1045}(31,\cdot)\) | 1045.bt | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(-1\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{19}{30}\right)\) |
\(\chi_{1045}(32,\cdot)\) | 1045.cd | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{1045}(34,\cdot)\) | 1045.bl | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{1045}(36,\cdot)\) | 1045.ce | 45 | no | \(1\) | \(1\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{32}{45}\right)\) | \(e\left(\frac{44}{45}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{11}{45}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{26}{45}\right)\) | \(e\left(\frac{13}{45}\right)\) |
\(\chi_{1045}(37,\cdot)\) | 1045.bp | 20 | yes | \(1\) | \(1\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(-i\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) |
\(\chi_{1045}(39,\cdot)\) | 1045.x | 10 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(-1\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) |
\(\chi_{1045}(41,\cdot)\) | 1045.cm | 90 | no | \(1\) | \(1\) | \(e\left(\frac{1}{45}\right)\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{2}{45}\right)\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{26}{45}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{41}{90}\right)\) |
\(\chi_{1045}(42,\cdot)\) | 1045.ct | 180 | yes | \(-1\) | \(1\) | \(e\left(\frac{173}{180}\right)\) | \(e\left(\frac{179}{180}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{43}{45}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{163}{180}\right)\) | \(e\left(\frac{7}{90}\right)\) |
\(\chi_{1045}(43,\cdot)\) | 1045.cb | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{1045}(46,\cdot)\) | 1045.by | 30 | no | \(1\) | \(1\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(-1\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{29}{30}\right)\) |
\(\chi_{1045}(47,\cdot)\) | 1045.ct | 180 | yes | \(-1\) | \(1\) | \(e\left(\frac{89}{180}\right)\) | \(e\left(\frac{167}{180}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{19}{45}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{139}{180}\right)\) | \(e\left(\frac{1}{90}\right)\) |