sage: H = DirichletGroup(1037)
pari: g = idealstar(,1037,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 960 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{4}\times C_{240}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{1037}(428,\cdot)$, $\chi_{1037}(307,\cdot)$ |
First 32 of 960 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1037}(1,\cdot)\) | 1037.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{1037}(2,\cdot)\) | 1037.cp | 120 | yes | \(-1\) | \(1\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{89}{120}\right)\) | \(e\left(\frac{29}{120}\right)\) | \(e\left(\frac{53}{120}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{1}{120}\right)\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{1037}(3,\cdot)\) | 1037.cl | 80 | yes | \(-1\) | \(1\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{53}{80}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{41}{80}\right)\) | \(e\left(\frac{51}{80}\right)\) | \(e\left(\frac{47}{80}\right)\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{39}{80}\right)\) | \(e\left(\frac{15}{16}\right)\) |
\(\chi_{1037}(4,\cdot)\) | 1037.ch | 60 | yes | \(1\) | \(1\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(-i\) |
\(\chi_{1037}(5,\cdot)\) | 1037.cq | 240 | yes | \(-1\) | \(1\) | \(e\left(\frac{89}{120}\right)\) | \(e\left(\frac{41}{80}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{151}{240}\right)\) | \(e\left(\frac{61}{240}\right)\) | \(e\left(\frac{97}{240}\right)\) | \(e\left(\frac{9}{40}\right)\) | \(e\left(\frac{1}{40}\right)\) | \(e\left(\frac{89}{240}\right)\) | \(e\left(\frac{11}{16}\right)\) |
\(\chi_{1037}(6,\cdot)\) | 1037.cr | 240 | yes | \(1\) | \(1\) | \(e\left(\frac{29}{120}\right)\) | \(e\left(\frac{51}{80}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{61}{240}\right)\) | \(e\left(\frac{211}{240}\right)\) | \(e\left(\frac{7}{240}\right)\) | \(e\left(\frac{29}{40}\right)\) | \(e\left(\frac{11}{40}\right)\) | \(e\left(\frac{119}{240}\right)\) | \(e\left(\frac{5}{16}\right)\) |
\(\chi_{1037}(7,\cdot)\) | 1037.cs | 240 | yes | \(1\) | \(1\) | \(e\left(\frac{53}{120}\right)\) | \(e\left(\frac{47}{80}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{97}{240}\right)\) | \(e\left(\frac{7}{240}\right)\) | \(e\left(\frac{139}{240}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{7}{40}\right)\) | \(e\left(\frac{203}{240}\right)\) | \(e\left(\frac{1}{16}\right)\) |
\(\chi_{1037}(8,\cdot)\) | 1037.bu | 40 | yes | \(-1\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{9}{40}\right)\) | \(e\left(\frac{29}{40}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{1}{40}\right)\) | \(e\left(\frac{1}{8}\right)\) |
\(\chi_{1037}(9,\cdot)\) | 1037.bv | 40 | yes | \(1\) | \(1\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{40}\right)\) | \(e\left(\frac{11}{40}\right)\) | \(e\left(\frac{7}{40}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{1037}(10,\cdot)\) | 1037.cr | 240 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{120}\right)\) | \(e\left(\frac{39}{80}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{89}{240}\right)\) | \(e\left(\frac{119}{240}\right)\) | \(e\left(\frac{203}{240}\right)\) | \(e\left(\frac{1}{40}\right)\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{91}{240}\right)\) | \(e\left(\frac{1}{16}\right)\) |
\(\chi_{1037}(11,\cdot)\) | 1037.bf | 16 | yes | \(1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(-i\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) |
\(\chi_{1037}(12,\cdot)\) | 1037.ct | 240 | yes | \(-1\) | \(1\) | \(e\left(\frac{61}{120}\right)\) | \(e\left(\frac{49}{80}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{239}{240}\right)\) | \(e\left(\frac{29}{240}\right)\) | \(e\left(\frac{113}{240}\right)\) | \(e\left(\frac{21}{40}\right)\) | \(e\left(\frac{9}{40}\right)\) | \(e\left(\frac{121}{240}\right)\) | \(e\left(\frac{11}{16}\right)\) |
\(\chi_{1037}(13,\cdot)\) | 1037.bb | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-1\) | \(-1\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) |
\(\chi_{1037}(14,\cdot)\) | 1037.cb | 48 | yes | \(-1\) | \(1\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{7}{16}\right)\) |
\(\chi_{1037}(15,\cdot)\) | 1037.co | 120 | yes | \(1\) | \(1\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{7}{40}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{17}{120}\right)\) | \(e\left(\frac{107}{120}\right)\) | \(e\left(\frac{119}{120}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{103}{120}\right)\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{1037}(16,\cdot)\) | 1037.bt | 30 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(-1\) |
\(\chi_{1037}(18,\cdot)\) | 1037.cg | 60 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(i\) |
\(\chi_{1037}(19,\cdot)\) | 1037.cn | 120 | yes | \(1\) | \(1\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{19}{40}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{109}{120}\right)\) | \(e\left(\frac{19}{120}\right)\) | \(e\left(\frac{103}{120}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{71}{120}\right)\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{1037}(20,\cdot)\) | 1037.ci | 80 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{40}\right)\) | \(e\left(\frac{37}{80}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{9}{80}\right)\) | \(e\left(\frac{59}{80}\right)\) | \(e\left(\frac{23}{80}\right)\) | \(e\left(\frac{33}{40}\right)\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{31}{80}\right)\) | \(e\left(\frac{7}{16}\right)\) |
\(\chi_{1037}(21,\cdot)\) | 1037.y | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) |
\(\chi_{1037}(22,\cdot)\) | 1037.ct | 240 | yes | \(-1\) | \(1\) | \(e\left(\frac{77}{120}\right)\) | \(e\left(\frac{73}{80}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{103}{240}\right)\) | \(e\left(\frac{133}{240}\right)\) | \(e\left(\frac{121}{240}\right)\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{33}{40}\right)\) | \(e\left(\frac{17}{240}\right)\) | \(e\left(\frac{3}{16}\right)\) |
\(\chi_{1037}(23,\cdot)\) | 1037.cj | 80 | yes | \(1\) | \(1\) | \(e\left(\frac{3}{40}\right)\) | \(e\left(\frac{51}{80}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{47}{80}\right)\) | \(e\left(\frac{57}{80}\right)\) | \(e\left(\frac{69}{80}\right)\) | \(e\left(\frac{9}{40}\right)\) | \(e\left(\frac{11}{40}\right)\) | \(e\left(\frac{53}{80}\right)\) | \(e\left(\frac{13}{16}\right)\) |
\(\chi_{1037}(24,\cdot)\) | 1037.cj | 80 | yes | \(1\) | \(1\) | \(e\left(\frac{31}{40}\right)\) | \(e\left(\frac{47}{80}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{59}{80}\right)\) | \(e\left(\frac{29}{80}\right)\) | \(e\left(\frac{73}{80}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{7}{40}\right)\) | \(e\left(\frac{41}{80}\right)\) | \(e\left(\frac{1}{16}\right)\) |
\(\chi_{1037}(25,\cdot)\) | 1037.co | 120 | yes | \(1\) | \(1\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{1}{40}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{31}{120}\right)\) | \(e\left(\frac{61}{120}\right)\) | \(e\left(\frac{97}{120}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{89}{120}\right)\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{1037}(26,\cdot)\) | 1037.cm | 120 | yes | \(-1\) | \(1\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{9}{40}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{79}{120}\right)\) | \(e\left(\frac{79}{120}\right)\) | \(e\left(\frac{103}{120}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{11}{120}\right)\) | \(e\left(\frac{1}{8}\right)\) |
\(\chi_{1037}(27,\cdot)\) | 1037.cl | 80 | yes | \(-1\) | \(1\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{79}{80}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{43}{80}\right)\) | \(e\left(\frac{73}{80}\right)\) | \(e\left(\frac{61}{80}\right)\) | \(e\left(\frac{31}{40}\right)\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{37}{80}\right)\) | \(e\left(\frac{13}{16}\right)\) |
\(\chi_{1037}(28,\cdot)\) | 1037.ck | 80 | yes | \(1\) | \(1\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{43}{80}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{71}{80}\right)\) | \(e\left(\frac{41}{80}\right)\) | \(e\left(\frac{37}{80}\right)\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{3}{40}\right)\) | \(e\left(\frac{69}{80}\right)\) | \(e\left(\frac{13}{16}\right)\) |
\(\chi_{1037}(29,\cdot)\) | 1037.ca | 48 | yes | \(1\) | \(1\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{7}{16}\right)\) |
\(\chi_{1037}(30,\cdot)\) | 1037.cf | 60 | yes | \(-1\) | \(1\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(1\) |
\(\chi_{1037}(31,\cdot)\) | 1037.cs | 240 | yes | \(1\) | \(1\) | \(e\left(\frac{103}{120}\right)\) | \(e\left(\frac{37}{80}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{107}{240}\right)\) | \(e\left(\frac{77}{240}\right)\) | \(e\left(\frac{89}{240}\right)\) | \(e\left(\frac{23}{40}\right)\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{73}{240}\right)\) | \(e\left(\frac{11}{16}\right)\) |
\(\chi_{1037}(32,\cdot)\) | 1037.bn | 24 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(1\) | \(-i\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{1037}(33,\cdot)\) | 1037.bi | 20 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(-i\) |