Properties

Modulus $1037$
Structure \(C_{4}\times C_{240}\)
Order $960$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(1037)
 
pari: g = idealstar(,1037,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 960
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{4}\times C_{240}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{1037}(428,\cdot)$, $\chi_{1037}(307,\cdot)$

First 32 of 960 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\)
\(\chi_{1037}(1,\cdot)\) 1037.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{1037}(2,\cdot)\) 1037.cp 120 yes \(-1\) \(1\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{89}{120}\right)\) \(e\left(\frac{29}{120}\right)\) \(e\left(\frac{53}{120}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{120}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{1037}(3,\cdot)\) 1037.cl 80 yes \(-1\) \(1\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{15}{16}\right)\)
\(\chi_{1037}(4,\cdot)\) 1037.ch 60 yes \(1\) \(1\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{60}\right)\) \(-i\)
\(\chi_{1037}(5,\cdot)\) 1037.cq 240 yes \(-1\) \(1\) \(e\left(\frac{89}{120}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{151}{240}\right)\) \(e\left(\frac{61}{240}\right)\) \(e\left(\frac{97}{240}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{89}{240}\right)\) \(e\left(\frac{11}{16}\right)\)
\(\chi_{1037}(6,\cdot)\) 1037.cr 240 yes \(1\) \(1\) \(e\left(\frac{29}{120}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{61}{240}\right)\) \(e\left(\frac{211}{240}\right)\) \(e\left(\frac{7}{240}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{119}{240}\right)\) \(e\left(\frac{5}{16}\right)\)
\(\chi_{1037}(7,\cdot)\) 1037.cs 240 yes \(1\) \(1\) \(e\left(\frac{53}{120}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{97}{240}\right)\) \(e\left(\frac{7}{240}\right)\) \(e\left(\frac{139}{240}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{203}{240}\right)\) \(e\left(\frac{1}{16}\right)\)
\(\chi_{1037}(8,\cdot)\) 1037.bu 40 yes \(-1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{1037}(9,\cdot)\) 1037.bv 40 yes \(1\) \(1\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{1037}(10,\cdot)\) 1037.cr 240 yes \(1\) \(1\) \(e\left(\frac{1}{120}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{89}{240}\right)\) \(e\left(\frac{119}{240}\right)\) \(e\left(\frac{203}{240}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{91}{240}\right)\) \(e\left(\frac{1}{16}\right)\)
\(\chi_{1037}(11,\cdot)\) 1037.bf 16 yes \(1\) \(1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(-i\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{13}{16}\right)\)
\(\chi_{1037}(12,\cdot)\) 1037.ct 240 yes \(-1\) \(1\) \(e\left(\frac{61}{120}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{239}{240}\right)\) \(e\left(\frac{29}{240}\right)\) \(e\left(\frac{113}{240}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{121}{240}\right)\) \(e\left(\frac{11}{16}\right)\)
\(\chi_{1037}(13,\cdot)\) 1037.bb 12 yes \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(-1\) \(-1\) \(e\left(\frac{1}{12}\right)\) \(-i\)
\(\chi_{1037}(14,\cdot)\) 1037.cb 48 yes \(-1\) \(1\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{7}{16}\right)\)
\(\chi_{1037}(15,\cdot)\) 1037.co 120 yes \(1\) \(1\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{17}{120}\right)\) \(e\left(\frac{107}{120}\right)\) \(e\left(\frac{119}{120}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{103}{120}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{1037}(16,\cdot)\) 1037.bt 30 yes \(1\) \(1\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{30}\right)\) \(-1\)
\(\chi_{1037}(18,\cdot)\) 1037.cg 60 no \(-1\) \(1\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{59}{60}\right)\) \(i\)
\(\chi_{1037}(19,\cdot)\) 1037.cn 120 yes \(1\) \(1\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{109}{120}\right)\) \(e\left(\frac{19}{120}\right)\) \(e\left(\frac{103}{120}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{71}{120}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{1037}(20,\cdot)\) 1037.ci 80 yes \(-1\) \(1\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{7}{16}\right)\)
\(\chi_{1037}(21,\cdot)\) 1037.y 12 yes \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(i\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\)
\(\chi_{1037}(22,\cdot)\) 1037.ct 240 yes \(-1\) \(1\) \(e\left(\frac{77}{120}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{103}{240}\right)\) \(e\left(\frac{133}{240}\right)\) \(e\left(\frac{121}{240}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{17}{240}\right)\) \(e\left(\frac{3}{16}\right)\)
\(\chi_{1037}(23,\cdot)\) 1037.cj 80 yes \(1\) \(1\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{13}{16}\right)\)
\(\chi_{1037}(24,\cdot)\) 1037.cj 80 yes \(1\) \(1\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{1}{16}\right)\)
\(\chi_{1037}(25,\cdot)\) 1037.co 120 yes \(1\) \(1\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{31}{120}\right)\) \(e\left(\frac{61}{120}\right)\) \(e\left(\frac{97}{120}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{89}{120}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{1037}(26,\cdot)\) 1037.cm 120 yes \(-1\) \(1\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{79}{120}\right)\) \(e\left(\frac{79}{120}\right)\) \(e\left(\frac{103}{120}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{120}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{1037}(27,\cdot)\) 1037.cl 80 yes \(-1\) \(1\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{13}{16}\right)\)
\(\chi_{1037}(28,\cdot)\) 1037.ck 80 yes \(1\) \(1\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{13}{16}\right)\)
\(\chi_{1037}(29,\cdot)\) 1037.ca 48 yes \(1\) \(1\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{7}{16}\right)\)
\(\chi_{1037}(30,\cdot)\) 1037.cf 60 yes \(-1\) \(1\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{13}{15}\right)\) \(1\)
\(\chi_{1037}(31,\cdot)\) 1037.cs 240 yes \(1\) \(1\) \(e\left(\frac{103}{120}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{107}{240}\right)\) \(e\left(\frac{77}{240}\right)\) \(e\left(\frac{89}{240}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{73}{240}\right)\) \(e\left(\frac{11}{16}\right)\)
\(\chi_{1037}(32,\cdot)\) 1037.bn 24 yes \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{24}\right)\) \(1\) \(-i\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{1037}(33,\cdot)\) 1037.bi 20 yes \(-1\) \(1\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{11}{20}\right)\) \(-i\)
Click here to search among the remaining 928 characters.