# Properties

 Label 102.i Modulus $102$ Conductor $51$ Order $16$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(102, base_ring=CyclotomicField(16))

M = H._module

chi = DirichletCharacter(H, M([8,5]))

chi.galois_orbit()

[g,chi] = znchar(Mod(5,102))

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$102$$ Conductor: $$51$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$16$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from 51.i sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q(\zeta_{16})$$ Fixed field: $$\Q(\zeta_{51})^+$$

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$5$$ $$7$$ $$11$$ $$13$$ $$19$$ $$23$$ $$25$$ $$29$$ $$31$$ $$35$$
$$\chi_{102}(5,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{1}{16}\right)$$ $$e\left(\frac{7}{16}\right)$$ $$e\left(\frac{11}{16}\right)$$ $$i$$ $$e\left(\frac{3}{8}\right)$$ $$e\left(\frac{3}{16}\right)$$ $$e\left(\frac{1}{8}\right)$$ $$e\left(\frac{9}{16}\right)$$ $$e\left(\frac{13}{16}\right)$$ $$-1$$
$$\chi_{102}(11,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{11}{16}\right)$$ $$e\left(\frac{13}{16}\right)$$ $$e\left(\frac{9}{16}\right)$$ $$-i$$ $$e\left(\frac{1}{8}\right)$$ $$e\left(\frac{1}{16}\right)$$ $$e\left(\frac{3}{8}\right)$$ $$e\left(\frac{3}{16}\right)$$ $$e\left(\frac{15}{16}\right)$$ $$-1$$
$$\chi_{102}(23,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{3}{16}\right)$$ $$e\left(\frac{5}{16}\right)$$ $$e\left(\frac{1}{16}\right)$$ $$-i$$ $$e\left(\frac{1}{8}\right)$$ $$e\left(\frac{9}{16}\right)$$ $$e\left(\frac{3}{8}\right)$$ $$e\left(\frac{11}{16}\right)$$ $$e\left(\frac{7}{16}\right)$$ $$-1$$
$$\chi_{102}(29,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{9}{16}\right)$$ $$e\left(\frac{15}{16}\right)$$ $$e\left(\frac{3}{16}\right)$$ $$i$$ $$e\left(\frac{3}{8}\right)$$ $$e\left(\frac{11}{16}\right)$$ $$e\left(\frac{1}{8}\right)$$ $$e\left(\frac{1}{16}\right)$$ $$e\left(\frac{5}{16}\right)$$ $$-1$$
$$\chi_{102}(41,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{15}{16}\right)$$ $$e\left(\frac{9}{16}\right)$$ $$e\left(\frac{5}{16}\right)$$ $$-i$$ $$e\left(\frac{5}{8}\right)$$ $$e\left(\frac{13}{16}\right)$$ $$e\left(\frac{7}{8}\right)$$ $$e\left(\frac{7}{16}\right)$$ $$e\left(\frac{3}{16}\right)$$ $$-1$$
$$\chi_{102}(65,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{5}{16}\right)$$ $$e\left(\frac{3}{16}\right)$$ $$e\left(\frac{7}{16}\right)$$ $$i$$ $$e\left(\frac{7}{8}\right)$$ $$e\left(\frac{15}{16}\right)$$ $$e\left(\frac{5}{8}\right)$$ $$e\left(\frac{13}{16}\right)$$ $$e\left(\frac{1}{16}\right)$$ $$-1$$
$$\chi_{102}(71,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{13}{16}\right)$$ $$e\left(\frac{11}{16}\right)$$ $$e\left(\frac{15}{16}\right)$$ $$i$$ $$e\left(\frac{7}{8}\right)$$ $$e\left(\frac{7}{16}\right)$$ $$e\left(\frac{5}{8}\right)$$ $$e\left(\frac{5}{16}\right)$$ $$e\left(\frac{9}{16}\right)$$ $$-1$$
$$\chi_{102}(95,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{7}{16}\right)$$ $$e\left(\frac{1}{16}\right)$$ $$e\left(\frac{13}{16}\right)$$ $$-i$$ $$e\left(\frac{5}{8}\right)$$ $$e\left(\frac{5}{16}\right)$$ $$e\left(\frac{7}{8}\right)$$ $$e\left(\frac{15}{16}\right)$$ $$e\left(\frac{11}{16}\right)$$ $$-1$$