Basic properties
sage: chi.conductor()
pari: znconreyconductor(g,chi)
| ||
Conductor | = | 101 |
sage: chi.multiplicative_order()
pari: charorder(g,chi)
| ||
Order | = | 100 |
Real | = | No |
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
| ||
Primitive | = | Yes |
sage: chi.is_odd()
pari: zncharisodd(g,chi)
| ||
Parity | = | Odd |
Orbit label | = | 101.i |
Orbit index | = | 9 |
Galois orbit
\(\chi_{101}(2,\cdot)\) \(\chi_{101}(3,\cdot)\) \(\chi_{101}(7,\cdot)\) \(\chi_{101}(8,\cdot)\) \(\chi_{101}(11,\cdot)\) \(\chi_{101}(12,\cdot)\) \(\chi_{101}(15,\cdot)\) \(\chi_{101}(18,\cdot)\) \(\chi_{101}(26,\cdot)\) \(\chi_{101}(27,\cdot)\) \(\chi_{101}(28,\cdot)\) \(\chi_{101}(29,\cdot)\) \(\chi_{101}(34,\cdot)\) \(\chi_{101}(35,\cdot)\) \(\chi_{101}(38,\cdot)\) \(\chi_{101}(40,\cdot)\) \(\chi_{101}(42,\cdot)\) \(\chi_{101}(46,\cdot)\) \(\chi_{101}(48,\cdot)\) \(\chi_{101}(50,\cdot)\) \(\chi_{101}(51,\cdot)\) \(\chi_{101}(53,\cdot)\) \(\chi_{101}(55,\cdot)\) \(\chi_{101}(59,\cdot)\) \(\chi_{101}(61,\cdot)\) \(\chi_{101}(63,\cdot)\) \(\chi_{101}(66,\cdot)\) \(\chi_{101}(67,\cdot)\) \(\chi_{101}(72,\cdot)\) \(\chi_{101}(73,\cdot)\) ...
Values on generators
\(2\) → \(e\left(\frac{99}{100}\right)\)
Values
-1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
\(-1\) | \(1\) | \(e\left(\frac{99}{100}\right)\) | \(e\left(\frac{31}{100}\right)\) | \(e\left(\frac{49}{50}\right)\) | \(e\left(\frac{19}{25}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{91}{100}\right)\) | \(e\left(\frac{97}{100}\right)\) | \(e\left(\frac{31}{50}\right)\) | \(-i\) | \(e\left(\frac{87}{100}\right)\) |
Related number fields
Field of values | \(\Q(\zeta_{100})\) |