sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(101, base_ring=CyclotomicField(50))
M = H._module
chi = DirichletCharacter(H, M([1]))
pari:[g,chi] = znchar(Mod(4,101))
Modulus: | \(101\) | |
Conductor: | \(101\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(50\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{101}(4,\cdot)\)
\(\chi_{101}(9,\cdot)\)
\(\chi_{101}(13,\cdot)\)
\(\chi_{101}(20,\cdot)\)
\(\chi_{101}(21,\cdot)\)
\(\chi_{101}(22,\cdot)\)
\(\chi_{101}(23,\cdot)\)
\(\chi_{101}(30,\cdot)\)
\(\chi_{101}(33,\cdot)\)
\(\chi_{101}(43,\cdot)\)
\(\chi_{101}(45,\cdot)\)
\(\chi_{101}(47,\cdot)\)
\(\chi_{101}(49,\cdot)\)
\(\chi_{101}(64,\cdot)\)
\(\chi_{101}(70,\cdot)\)
\(\chi_{101}(76,\cdot)\)
\(\chi_{101}(77,\cdot)\)
\(\chi_{101}(82,\cdot)\)
\(\chi_{101}(85,\cdot)\)
\(\chi_{101}(96,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(2\) → \(e\left(\frac{1}{50}\right)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 101 }(4, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{50}\right)\) | \(e\left(\frac{19}{50}\right)\) | \(e\left(\frac{1}{25}\right)\) | \(e\left(\frac{12}{25}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{9}{50}\right)\) | \(e\left(\frac{3}{50}\right)\) | \(e\left(\frac{19}{25}\right)\) | \(-1\) | \(e\left(\frac{13}{50}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)