sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1001, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([5,9,10]))
pari:[g,chi] = znchar(Mod(822,1001))
Modulus: | \(1001\) | |
Conductor: | \(1001\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(30\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1001}(61,\cdot)\)
\(\chi_{1001}(94,\cdot)\)
\(\chi_{1001}(425,\cdot)\)
\(\chi_{1001}(458,\cdot)\)
\(\chi_{1001}(607,\cdot)\)
\(\chi_{1001}(640,\cdot)\)
\(\chi_{1001}(789,\cdot)\)
\(\chi_{1001}(822,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((430,365,925)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{3}{10}\right),e\left(\frac{1}{3}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(12\) | \(15\) |
\( \chi_{ 1001 }(822, a) \) |
\(1\) | \(1\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{14}{15}\right)\) |
sage:chi.jacobi_sum(n)