sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1001, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([15,6,20]))
pari:[g,chi] = znchar(Mod(48,1001))
Modulus: | \(1001\) | |
Conductor: | \(1001\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(30\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1001}(48,\cdot)\)
\(\chi_{1001}(146,\cdot)\)
\(\chi_{1001}(328,\cdot)\)
\(\chi_{1001}(412,\cdot)\)
\(\chi_{1001}(510,\cdot)\)
\(\chi_{1001}(685,\cdot)\)
\(\chi_{1001}(867,\cdot)\)
\(\chi_{1001}(874,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((430,365,925)\) → \((-1,e\left(\frac{1}{5}\right),e\left(\frac{2}{3}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(12\) | \(15\) |
\( \chi_{ 1001 }(48, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{15}\right)\) |
sage:chi.jacobi_sum(n)