Properties

Label 1001.16
Modulus $1001$
Conductor $1001$
Order $15$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1001, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([10,12,10]))
 
Copy content pari:[g,chi] = znchar(Mod(16,1001))
 

Basic properties

Modulus: \(1001\)
Conductor: \(1001\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(15\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1001.cq

\(\chi_{1001}(16,\cdot)\) \(\chi_{1001}(256,\cdot)\) \(\chi_{1001}(289,\cdot)\) \(\chi_{1001}(438,\cdot)\) \(\chi_{1001}(471,\cdot)\) \(\chi_{1001}(620,\cdot)\) \(\chi_{1001}(653,\cdot)\) \(\chi_{1001}(984,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 15 polynomial

Values on generators

\((430,365,925)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{2}{5}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(12\)\(15\)
\( \chi_{ 1001 }(16, a) \) \(1\)\(1\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{2}{15}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1001 }(16,a) \;\) at \(\;a = \) e.g. 2