sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1001, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([10,12,10]))
pari:[g,chi] = znchar(Mod(16,1001))
Modulus: | \(1001\) | |
Conductor: | \(1001\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(15\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1001}(16,\cdot)\)
\(\chi_{1001}(256,\cdot)\)
\(\chi_{1001}(289,\cdot)\)
\(\chi_{1001}(438,\cdot)\)
\(\chi_{1001}(471,\cdot)\)
\(\chi_{1001}(620,\cdot)\)
\(\chi_{1001}(653,\cdot)\)
\(\chi_{1001}(984,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((430,365,925)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{2}{5}\right),e\left(\frac{1}{3}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(12\) | \(15\) |
\( \chi_{ 1001 }(16, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{15}\right)\) |
sage:chi.jacobi_sum(n)