sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1000, base_ring=CyclotomicField(50))
M = H._module
chi = DirichletCharacter(H, M([25,25,9]))
pari:[g,chi] = znchar(Mod(19,1000))
Modulus: | \(1000\) | |
Conductor: | \(1000\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(50\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1000}(19,\cdot)\)
\(\chi_{1000}(59,\cdot)\)
\(\chi_{1000}(139,\cdot)\)
\(\chi_{1000}(179,\cdot)\)
\(\chi_{1000}(219,\cdot)\)
\(\chi_{1000}(259,\cdot)\)
\(\chi_{1000}(339,\cdot)\)
\(\chi_{1000}(379,\cdot)\)
\(\chi_{1000}(419,\cdot)\)
\(\chi_{1000}(459,\cdot)\)
\(\chi_{1000}(539,\cdot)\)
\(\chi_{1000}(579,\cdot)\)
\(\chi_{1000}(619,\cdot)\)
\(\chi_{1000}(659,\cdot)\)
\(\chi_{1000}(739,\cdot)\)
\(\chi_{1000}(779,\cdot)\)
\(\chi_{1000}(819,\cdot)\)
\(\chi_{1000}(859,\cdot)\)
\(\chi_{1000}(939,\cdot)\)
\(\chi_{1000}(979,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((751,501,377)\) → \((-1,-1,e\left(\frac{9}{50}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
\( \chi_{ 1000 }(19, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{13}{50}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{13}{25}\right)\) | \(e\left(\frac{17}{25}\right)\) | \(e\left(\frac{13}{25}\right)\) | \(e\left(\frac{7}{50}\right)\) | \(e\left(\frac{6}{25}\right)\) | \(e\left(\frac{3}{50}\right)\) | \(e\left(\frac{2}{25}\right)\) | \(e\left(\frac{39}{50}\right)\) |
sage:chi.jacobi_sum(n)