Galois conjugate representations are grouped into single lines.
Label |
Dimension |
Conductor |
Ramified prime count |
Artin stem field |
$G$ |
Projective image |
Container |
Ind |
$\chi(c)$ |
3.17689.42t37.a.a 3.17689.42t37.a.b |
$3$ |
$ 7^{2} \cdot 19^{2}$ |
$2$ |
7.3.312900721.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.29768.42t37.a.a 3.29768.42t37.a.b |
$3$ |
$ 2^{3} \cdot 61^{2}$ |
$2$ |
7.3.886133824.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.44944.42t37.a.a 3.44944.42t37.a.b |
$3$ |
$ 2^{4} \cdot 53^{2}$ |
$2$ |
7.3.504990784.2 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.95832.42t37.a.a 3.95832.42t37.a.b |
$3$ |
$ 2^{3} \cdot 3^{2} \cdot 11^{3}$ |
$3$ |
7.3.9183772224.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.194481.42t37.a.a 3.194481.42t37.a.b |
$3$ |
$ 3^{4} \cdot 7^{4}$ |
$2$ |
7.3.4202539929.3 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.202248.42t37.a.a 3.202248.42t37.a.b |
$3$ |
$ 2^{3} \cdot 3^{2} \cdot 53^{2}$ |
$3$ |
7.3.4544917056.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.299475.42t37.a.a 3.299475.42t37.a.b |
$3$ |
$ 3^{2} \cdot 5^{2} \cdot 11^{3}$ |
$3$ |
7.3.9965030625.2 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.340736.42t37.a.a 3.340736.42t37.a.b |
$3$ |
$ 2^{8} \cdot 11^{3}$ |
$2$ |
7.3.1814078464.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.345744.42t37.a.a 3.345744.42t37.a.b |
$3$ |
$ 2^{4} \cdot 3^{2} \cdot 7^{4}$ |
$3$ |
7.3.3320525376.3 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.376712.42t37.a.a 3.376712.42t37.a.b |
$3$ |
$ 2^{3} \cdot 7^{2} \cdot 31^{2}$ |
$3$ |
7.3.147671104.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.532400.42t37.a.a 3.532400.42t37.a.b |
$3$ |
$ 2^{4} \cdot 5^{2} \cdot 11^{3}$ |
$3$ |
7.3.2834497600.2 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.614656.42t37.a.a 3.614656.42t37.a.b |
$3$ |
$ 2^{8} \cdot 7^{4}$ |
$2$ |
7.3.1475789056.2 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.803912.42t37.a.a 3.803912.42t37.a.b |
$3$ |
$ 2^{3} \cdot 317^{2}$ |
$2$ |
7.3.6431296.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.1279091.42t37.a.a 3.1279091.42t37.a.b |
$3$ |
$ 11^{3} \cdot 31^{2}$ |
$2$ |
7.3.1702470121.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.1569992.42t37.a.a 3.1569992.42t37.a.b |
$3$ |
$ 2^{3} \cdot 443^{2}$ |
$2$ |
7.3.12559936.2 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.1670792.42t37.a.a 3.1670792.42t37.a.b |
$3$ |
$ 2^{3} \cdot 457^{2}$ |
$2$ |
7.3.13366336.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.2007889.42t37.a.a 3.2007889.42t37.a.b |
$3$ |
$ 13^{2} \cdot 109^{2}$ |
$2$ |
7.3.2007889.2 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.2171528.42t37.a.a 3.2171528.42t37.a.b |
$3$ |
$ 2^{3} \cdot 521^{2}$ |
$2$ |
7.3.17372224.2 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.3143529.42t37.a.a 3.3143529.42t37.a.b |
$3$ |
$ 3^{4} \cdot 197^{2}$ |
$2$ |
7.3.28291761.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.3225800.42t37.a.a 3.3225800.42t37.a.b |
$3$ |
$ 2^{3} \cdot 5^{2} \cdot 127^{2}$ |
$3$ |
7.3.25806400.2 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.3495368.42t37.a.a 3.3495368.42t37.a.b |
$3$ |
$ 2^{3} \cdot 661^{2}$ |
$2$ |
7.3.27962944.2 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.3857296.42t37.a.a 3.3857296.42t37.a.b |
$3$ |
$ 2^{4} \cdot 491^{2}$ |
$2$ |
7.3.15429184.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.5392328.42t37.a.a 3.5392328.42t37.a.b |
$3$ |
$ 2^{3} \cdot 821^{2}$ |
$2$ |
7.3.43138624.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.7513081.42t37.a.a 3.7513081.42t37.a.b |
$3$ |
$ 2741^{2}$ |
$1$ |
7.3.7513081.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.7542728.42t37.a.a 3.7542728.42t37.a.b |
$3$ |
$ 2^{3} \cdot 971^{2}$ |
$2$ |
7.3.60341824.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.8209352.42t37.a.a 3.8209352.42t37.a.b |
$3$ |
$ 2^{3} \cdot 1013^{2}$ |
$2$ |
7.3.65674816.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.8669448.42t37.a.a 3.8669448.42t37.a.b |
$3$ |
$ 2^{3} \cdot 3^{2} \cdot 347^{2}$ |
$3$ |
7.3.624200256.2 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.8832784.42t37.a.a 3.8832784.42t37.a.b |
$3$ |
$ 2^{4} \cdot 743^{2}$ |
$2$ |
7.3.35331136.2 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.9388096.42t37.a.a 3.9388096.42t37.a.b |
$3$ |
$ 2^{6} \cdot 383^{2}$ |
$2$ |
7.3.9388096.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.9732872.42t37.a.a 3.9732872.42t37.a.b |
$3$ |
$ 2^{3} \cdot 1103^{2}$ |
$2$ |
7.3.77862976.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.10163344.42t37.a.a 3.10163344.42t37.a.b |
$3$ |
$ 2^{4} \cdot 797^{2}$ |
$2$ |
7.3.40653376.2 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.10660225.42t37.a.a 3.10660225.42t37.a.b |
$3$ |
$ 5^{2} \cdot 653^{2}$ |
$2$ |
7.3.266505625.2 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.11385992.42t37.a.a 3.11385992.42t37.a.b |
$3$ |
$ 2^{3} \cdot 1193^{2}$ |
$2$ |
7.3.91087936.2 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.12241352.42t37.a.a 3.12241352.42t37.a.b |
$3$ |
$ 2^{3} \cdot 1237^{2}$ |
$2$ |
7.3.97930816.2 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.12759184.42t37.a.a 3.12759184.42t37.a.b |
$3$ |
$ 2^{4} \cdot 19^{2} \cdot 47^{2}$ |
$3$ |
7.7.18424261696.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$3$ |
3.14047504.42t37.a.a 3.14047504.42t37.a.b |
$3$ |
$ 2^{4} \cdot 937^{2}$ |
$2$ |
7.3.56190016.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.14120579.42t37.a.a 3.14120579.42t37.a.b |
$3$ |
$ 11^{3} \cdot 103^{2}$ |
$2$ |
7.3.18794490649.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.14462809.42t37.a.a 3.14462809.42t37.a.b |
$3$ |
$ 3803^{2}$ |
$1$ |
7.3.14462809.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.14707225.42t37.a.a 3.14707225.42t37.a.b |
$3$ |
$ 5^{2} \cdot 13^{2} \cdot 59^{2}$ |
$3$ |
7.3.367680625.2 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.14784025.42t37.a.a 3.14784025.42t37.a.b |
$3$ |
$ 5^{2} \cdot 769^{2}$ |
$2$ |
7.3.369600625.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.15864289.42t37.a.a 3.15864289.42t37.a.b |
$3$ |
$ 7^{2} \cdot 569^{2}$ |
$2$ |
7.3.15864289.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.16128256.42t37.a.a 3.16128256.42t37.a.b |
$3$ |
$ 2^{8} \cdot 251^{2}$ |
$2$ |
7.3.64513024.2 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.17280649.42t37.a.a 3.17280649.42t37.a.b |
$3$ |
$ 4157^{2}$ |
$1$ |
7.3.17280649.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.17606416.42t37.a.a 3.17606416.42t37.a.b |
$3$ |
$ 2^{4} \cdot 1049^{2}$ |
$2$ |
7.3.70425664.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.19456921.42t37.a.a 3.19456921.42t37.a.b |
$3$ |
$ 11^{2} \cdot 401^{2}$ |
$2$ |
7.3.19456921.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.19527561.42t37.a.a 3.19527561.42t37.a.b |
$3$ |
$ 3^{4} \cdot 491^{2}$ |
$2$ |
7.3.175748049.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.19669225.42t37.a.a 3.19669225.42t37.a.b |
$3$ |
$ 5^{2} \cdot 887^{2}$ |
$2$ |
7.3.491730625.2 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.21595592.42t37.a.a 3.21595592.42t37.a.b |
$3$ |
$ 2^{3} \cdot 31^{2} \cdot 53^{2}$ |
$3$ |
7.3.172764736.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.23785129.42t37.a.a 3.23785129.42t37.a.b |
$3$ |
$ 4877^{2}$ |
$1$ |
7.3.23785129.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |
3.24026312.42t37.a.a 3.24026312.42t37.a.b |
$3$ |
$ 2^{3} \cdot 1733^{2}$ |
$2$ |
7.3.192210496.1 |
$\GL(3,2)$ |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$0$ |
$-1$ |