Learn more about

Refine search


Results (1-50 of at least 1000)

Next
Galois conjugate representations are grouped into single lines.
Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
2.283.24t22.a.a 2.283.24t22.a.b $2$ $ 283 $ 8.2.22665187.3 $\textrm{GL(2,3)}$ $0$ $0$
2.331.24t22.a.a 2.331.24t22.a.b $2$ $ 331 $ 8.2.36264691.2 $\textrm{GL(2,3)}$ $0$ $0$
2.344.24t22.a.a 2.344.24t22.a.b $2$ $ 2^{3} \cdot 43 $ 8.2.81415168.2 $\textrm{GL(2,3)}$ $0$ $0$
2.491.24t22.a.a 2.491.24t22.a.b $2$ $ 491 $ 8.2.118370771.2 $\textrm{GL(2,3)}$ $0$ $0$
2.563.24t22.a.a 2.563.24t22.a.b $2$ $ 563 $ 8.2.178453547.2 $\textrm{GL(2,3)}$ $0$ $0$
2.643.24t22.a.a 2.643.24t22.a.b $2$ $ 643 $ 8.2.265847707.1 $\textrm{GL(2,3)}$ $0$ $0$
2.688.24t22.a.a 2.688.24t22.a.b $2$ $ 2^{4} \cdot 43 $ 8.2.325660672.2 $\textrm{GL(2,3)}$ $0$ $0$
2.751.24t22.a.a 2.751.24t22.a.b $2$ $ 751 $ 8.2.423564751.1 $\textrm{GL(2,3)}$ $0$ $0$
2.968.24t22.a.a 2.968.24t22.a.b $2$ $ 2^{3} \cdot 11^{2}$ 8.2.19954863104.2 $\textrm{GL(2,3)}$ $0$ $0$
2.981.24t22.c.a 2.981.24t22.c.b $2$ $ 3^{2} \cdot 109 $ 8.2.2832228423.3 $\textrm{GL(2,3)}$ $0$ $0$
2.981.24t22.a.a 2.981.24t22.a.b $2$ $ 3^{2} \cdot 109 $ 8.2.2832228423.1 $\textrm{GL(2,3)}$ $0$ $0$
2.1048.24t22.a.a 2.1048.24t22.a.b $2$ $ 2^{3} \cdot 131 $ 8.2.2302045184.2 $\textrm{GL(2,3)}$ $0$ $0$
2.1099.24t22.c.a 2.1099.24t22.c.b $2$ $ 7 \cdot 157 $ 8.2.1327373299.4 $\textrm{GL(2,3)}$ $0$ $0$
2.1099.24t22.a.a 2.1099.24t22.a.b $2$ $ 7 \cdot 157 $ 8.2.1327373299.2 $\textrm{GL(2,3)}$ $0$ $0$
2.1107.24t22.c.a 2.1107.24t22.c.b $2$ $ 3^{3} \cdot 41 $ 8.2.150730227.6 $\textrm{GL(2,3)}$ $0$ $0$
2.1107.24t22.a.a 2.1107.24t22.a.b $2$ $ 3^{3} \cdot 41 $ 8.2.150730227.4 $\textrm{GL(2,3)}$ $0$ $0$
2.1224.24t22.b.a 2.1224.24t22.b.b $2$ $ 2^{3} \cdot 3^{2} \cdot 17 $ 8.2.11002604544.4 $\textrm{GL(2,3)}$ $0$ $0$
2.1224.24t22.a.a 2.1224.24t22.a.b $2$ $ 2^{3} \cdot 3^{2} \cdot 17 $ 8.2.11002604544.1 $\textrm{GL(2,3)}$ $0$ $0$
2.1304.24t22.a.a 2.1304.24t22.a.b $2$ $ 2^{3} \cdot 163 $ 8.2.4434684928.1 $\textrm{GL(2,3)}$ $0$ $0$
2.1399.24t22.a.a 2.1399.24t22.a.b $2$ $ 1399 $ 8.2.2738124199.1 $\textrm{GL(2,3)}$ $0$ $0$
2.1423.24t22.a.a 2.1423.24t22.a.b $2$ $ 1423 $ 8.2.2881473967.1 $\textrm{GL(2,3)}$ $0$ $0$
2.1444.24t22.a.a 2.1444.24t22.a.b $2$ $ 2^{2} \cdot 19^{2}$ 8.2.14301947824.1 $\textrm{GL(2,3)}$ $0$ $0$
2.1557.24t22.b.a 2.1557.24t22.b.b $2$ $ 3^{2} \cdot 173 $ 8.2.11323667079.3 $\textrm{GL(2,3)}$ $0$ $0$
2.1557.24t22.a.a 2.1557.24t22.a.b $2$ $ 3^{2} \cdot 173 $ 8.2.11323667079.2 $\textrm{GL(2,3)}$ $0$ $0$
2.1800.24t22.c.a 2.1800.24t22.c.b $2$ $ 2^{3} \cdot 3^{2} \cdot 5^{2}$ 8.2.1399680000.1 $\textrm{GL(2,3)}$ $0$ $0$
2.1800.24t22.a.a 2.1800.24t22.a.b $2$ $ 2^{3} \cdot 3^{2} \cdot 5^{2}$ 8.2.34992000000.5 $\textrm{GL(2,3)}$ $0$ $0$
2.1816.24t22.a.a 2.1816.24t22.a.b $2$ $ 2^{3} \cdot 227 $ 8.2.11977812992.1 $\textrm{GL(2,3)}$ $0$ $0$
2.1823.24t22.a.a 2.1823.24t22.a.b $2$ $ 1823 $ 8.2.6058428767.1 $\textrm{GL(2,3)}$ $0$ $0$
2.1879.24t22.a.a 2.1879.24t22.a.b $2$ $ 1879 $ 8.2.6634074439.1 $\textrm{GL(2,3)}$ $0$ $0$
2.1888.24t22.a.a 2.1888.24t22.a.b $2$ $ 2^{5} \cdot 59 $ 8.2.13459718144.1 $\textrm{GL(2,3)}$ $0$ $0$
2.1888.24t22.b.a 2.1888.24t22.b.b $2$ $ 2^{5} \cdot 59 $ 8.2.13459718144.2 $\textrm{GL(2,3)}$ $0$ $0$
2.1931.24t22.a.a 2.1931.24t22.a.b $2$ $ 1931 $ 8.2.7200237491.1 $\textrm{GL(2,3)}$ $0$ $0$
2.1936.24t22.a.a 2.1936.24t22.a.b $2$ $ 2^{4} \cdot 11^{2}$ 8.2.79819452416.1 $\textrm{GL(2,3)}$ $0$ $0$
2.1944.24t22.a.a 2.1944.24t22.a.b $2$ $ 2^{3} \cdot 3^{5}$ 8.2.181398528.1 $\textrm{GL(2,3)}$ $0$ $0$
2.2092.24t22.a.a 2.2092.24t22.a.b $2$ $ 2^{2} \cdot 523 $ 8.2.2288890672.2 $\textrm{GL(2,3)}$ $0$ $0$
2.2096.24t22.a.a 2.2096.24t22.a.b $2$ $ 2^{4} \cdot 131 $ 8.2.9208180736.1 $\textrm{GL(2,3)}$ $0$ $0$
2.2151.24t22.b.a 2.2151.24t22.b.b $2$ $ 3^{2} \cdot 239 $ 8.2.9952248951.2 $\textrm{GL(2,3)}$ $0$ $0$
2.2151.24t22.a.a 2.2151.24t22.a.b $2$ $ 3^{2} \cdot 239 $ 8.2.9952248951.1 $\textrm{GL(2,3)}$ $0$ $0$
2.2183.24t22.a.a 2.2183.24t22.a.b $2$ $ 37 \cdot 59 $ 8.2.10403062487.1 $\textrm{GL(2,3)}$ $0$ $0$
2.2183.24t22.c.a 2.2183.24t22.c.b $2$ $ 37 \cdot 59 $ 8.2.10403062487.3 $\textrm{GL(2,3)}$ $0$ $0$
2.2243.24t22.a.a 2.2243.24t22.a.b $2$ $ 2243 $ 8.2.11284642907.1 $\textrm{GL(2,3)}$ $0$ $0$
2.2284.24t22.a.a 2.2284.24t22.a.b $2$ $ 2^{2} \cdot 571 $ 8.2.2978710576.1 $\textrm{GL(2,3)}$ $0$ $0$
2.2432.24t22.a.a 2.2432.24t22.a.b $2$ $ 2^{7} \cdot 19 $ 8.2.28768731136.1 $\textrm{GL(2,3)}$ $0$ $0$
2.2432.24t22.e.a 2.2432.24t22.e.b $2$ $ 2^{7} \cdot 19 $ 8.2.28768731136.5 $\textrm{GL(2,3)}$ $0$ $0$
2.2432.24t22.d.a 2.2432.24t22.d.b $2$ $ 2^{7} \cdot 19 $ 8.2.28768731136.4 $\textrm{GL(2,3)}$ $0$ $0$
2.2432.24t22.b.a 2.2432.24t22.b.b $2$ $ 2^{7} \cdot 19 $ 8.2.28768731136.2 $\textrm{GL(2,3)}$ $0$ $0$
2.2448.24t22.a.a 2.2448.24t22.a.b $2$ $ 2^{4} \cdot 3^{2} \cdot 17 $ 8.2.44010418176.1 $\textrm{GL(2,3)}$ $0$ $0$
2.2448.24t22.c.a 2.2448.24t22.c.b $2$ $ 2^{4} \cdot 3^{2} \cdot 17 $ 8.2.44010418176.3 $\textrm{GL(2,3)}$ $0$ $0$
2.2547.24t22.a.a 2.2547.24t22.a.b $2$ $ 3^{2} \cdot 283 $ 8.2.1835880147.2 $\textrm{GL(2,3)}$ $0$ $0$
2.2563.24t22.b.a 2.2563.24t22.b.b $2$ $ 11 \cdot 233 $ 8.2.16836267547.2 $\textrm{GL(2,3)}$ $0$ $0$
Next