Galois conjugate representations are grouped into single lines.
Label |
Dimension |
Conductor |
Ramified prime count |
Artin stem field |
$G$ |
Projective image |
Container |
Ind |
$\chi(c)$ |
8.1030089025.12t213.a.a |
$8$ |
$ 5^{2} \cdot 7^{4} \cdot 131^{2}$ |
$3$ |
9.1.1967079625.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.1060870041.12t213.a.a |
$8$ |
$ 3^{4} \cdot 7^{2} \cdot 11^{2} \cdot 47^{2}$ |
$4$ |
9.1.142195876977.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.1546691584.12t213.a.a |
$8$ |
$ 2^{10} \cdot 1229^{2}$ |
$2$ |
9.3.118805247296.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.1708003584.12t213.a.a |
$8$ |
$ 2^{8} \cdot 3^{4} \cdot 7^{2} \cdot 41^{2}$ |
$4$ |
9.1.490197028608.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.2434731649.12t213.a.a |
$8$ |
$ 7^{4} \cdot 19^{2} \cdot 53^{2}$ |
$3$ |
9.1.7148031401.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.2613254400.12t213.a.a |
$8$ |
$ 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 71^{2}$ |
$4$ |
9.1.34359456000.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.2854123776.12t213.a.a |
$8$ |
$ 2^{8} \cdot 3^{4} \cdot 7^{2} \cdot 53^{2}$ |
$4$ |
9.1.39217774848.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.4079632384.12t213.a.a |
$8$ |
$ 2^{14} \cdot 499^{2}$ |
$2$ |
9.1.7952095936.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.4837480704.12t213.a.a |
$8$ |
$ 2^{8} \cdot 3^{6} \cdot 7^{2} \cdot 23^{2}$ |
$4$ |
9.1.86537154816.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.5671897344.12t213.a.a |
$8$ |
$ 2^{8} \cdot 3^{4} \cdot 523^{2}$ |
$3$ |
9.1.988800770304.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.6591978481.12t213.a.a |
$8$ |
$ 11^{6} \cdot 61^{2}$ |
$2$ |
9.1.3323228821.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.6784487424.12t213.a.a |
$8$ |
$ 2^{12} \cdot 3^{4} \cdot 11^{2} \cdot 13^{2}$ |
$4$ |
9.1.17966327808.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.7144982784.12t213.a.a |
$8$ |
$ 2^{8} \cdot 3^{4} \cdot 587^{2}$ |
$3$ |
9.1.155337218304.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.7575961600.12t213.a.a |
$8$ |
$ 2^{20} \cdot 5^{2} \cdot 17^{2}$ |
$3$ |
9.1.20123648000.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.7953250761.12t213.a.a |
$8$ |
$ 3^{10} \cdot 367^{2}$ |
$2$ |
9.3.36035099127.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.8256266496.12t213.a.a |
$8$ |
$ 2^{8} \cdot 3^{4} \cdot 631^{2}$ |
$3$ |
9.7.5209704158976.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.9069133824.12t213.a.a |
$8$ |
$ 2^{20} \cdot 3^{2} \cdot 31^{2}$ |
$3$ |
9.1.26357170176.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.9120059001.12t213.a.a |
$8$ |
$ 3^{12} \cdot 131^{2}$ |
$2$ |
9.1.32257648686537.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.9155562688.9t26.a.a |
$8$ |
$ 2^{6} \cdot 523^{3}$ |
$2$ |
9.3.9155562688.1 |
$((C_3^2:Q_8):C_3):C_2$ |
$C_3^2:\GL(2,3)$ |
$((C_3^2:Q_8):C_3):C_2$ |
$1$ |
$2$ |
8.9306653841.12t213.a.a |
$8$ |
$ 3^{10} \cdot 397^{2}$ |
$2$ |
9.1.45614093517.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.9968025600.12t213.a.a |
$8$ |
$ 2^{18} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2}$ |
$4$ |
9.1.30371328000.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.11110846464.12t213.a.a |
$8$ |
$ 2^{12} \cdot 3^{6} \cdot 61^{2}$ |
$3$ |
9.1.37653424128.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.11670913024.12t213.a.a |
$8$ |
$ 2^{18} \cdot 211^{2}$ |
$2$ |
9.1.2404846336.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.11757498624.12t213.a.a |
$8$ |
$ 2^{8} \cdot 3^{6} \cdot 251^{2}$ |
$3$ |
9.1.1311614290944.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.11851370496.12t213.a.a |
$8$ |
$ 2^{12} \cdot 3^{10} \cdot 7^{2}$ |
$3$ |
9.1.186659085312.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.12408177664.12t178.a.a |
$8$ |
$ 2^{10} \cdot 59^{4}$ |
$2$ |
9.1.43192866448384.1 |
$(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ |
$C_3^3:S_4$ |
$C_3^3:S_4$ |
$1$ |
$0$ |
8.13210973721.12t213.a.a |
$8$ |
$ 3^{10} \cdot 11^{2} \cdot 43^{2}$ |
$3$ |
9.1.77145562593.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.13254456384.12t213.a.a |
$8$ |
$ 2^{6} \cdot 3^{6} \cdot 13^{2} \cdot 41^{2}$ |
$4$ |
9.1.784958361408.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.13705853184.12t213.a.a |
$8$ |
$ 2^{8} \cdot 3^{6} \cdot 271^{2}$ |
$3$ |
9.3.412698468096.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.14113440000.12t213.a.a |
$8$ |
$ 2^{8} \cdot 3^{6} \cdot 5^{4} \cdot 11^{2}$ |
$4$ |
9.1.431244000000.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.15479341056.12t213.a.a |
$8$ |
$ 2^{18} \cdot 3^{10}$ |
$2$ |
9.1.13060694016.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.15551087616.12t213.a.a |
$8$ |
$ 2^{10} \cdot 3^{4} \cdot 433^{2}$ |
$3$ |
9.1.561135078144.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.16836267547.9t26.a.a |
$8$ |
$ 11^{3} \cdot 233^{3}$ |
$2$ |
9.3.16836267547.1 |
$((C_3^2:Q_8):C_3):C_2$ |
$C_3^2:\GL(2,3)$ |
$((C_3^2:Q_8):C_3):C_2$ |
$1$ |
$2$ |
8.16912482304.12t213.a.a |
$8$ |
$ 2^{20} \cdot 127^{2}$ |
$2$ |
9.3.67121414144.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.17256481947.18t157.a.a |
$8$ |
$ 3^{7} \cdot 53^{4}$ |
$2$ |
9.3.17256481947.1 |
$((C_3^2:Q_8):C_3):C_2$ |
$C_3^2:\GL(2,3)$ |
$C_3^2:\GL(2,3)$ |
$1$ |
$-2$ |
8.17256481947.9t26.a.a |
$8$ |
$ 3^{7} \cdot 53^{4}$ |
$2$ |
9.3.17256481947.1 |
$((C_3^2:Q_8):C_3):C_2$ |
$C_3^2:\GL(2,3)$ |
$((C_3^2:Q_8):C_3):C_2$ |
$1$ |
$2$ |
8.17703899136.12t213.a.a |
$8$ |
$ 2^{12} \cdot 3^{6} \cdot 7^{2} \cdot 11^{2}$ |
$4$ |
9.1.2366667072.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.17964142659.9t26.a.a |
$8$ |
$ 3^{9} \cdot 97^{3}$ |
$2$ |
9.3.17964142659.1 |
$((C_3^2:Q_8):C_3):C_2$ |
$C_3^2:\GL(2,3)$ |
$((C_3^2:Q_8):C_3):C_2$ |
$1$ |
$2$ |
8.27869297481.12t213.a.a |
$8$ |
$ 3^{12} \cdot 229^{2}$ |
$2$ |
9.7.236372930487.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.31218649344.12t213.a.a |
$8$ |
$ 2^{8} \cdot 3^{6} \cdot 409^{2}$ |
$3$ |
9.1.1418714175744.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.31826560000.12t213.a.a |
$8$ |
$ 2^{10} \cdot 5^{4} \cdot 223^{2}$ |
$3$ |
9.5.354866144000.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.32529729600.12t213.a.a |
$8$ |
$ 2^{6} \cdot 3^{6} \cdot 5^{2} \cdot 167^{2}$ |
$4$ |
9.3.3018036024000.2 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.35101146609.12t213.a.a |
$8$ |
$ 3^{12} \cdot 257^{2}$ |
$2$ |
9.7.334110914019.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.36889110963.18t157.a.a |
$8$ |
$ 3^{9} \cdot 37^{4}$ |
$2$ |
9.3.36889110963.1 |
$((C_3^2:Q_8):C_3):C_2$ |
$C_3^2:\GL(2,3)$ |
$C_3^2:\GL(2,3)$ |
$1$ |
$-2$ |
8.36889110963.9t26.a.a |
$8$ |
$ 3^{9} \cdot 37^{4}$ |
$2$ |
9.3.36889110963.1 |
$((C_3^2:Q_8):C_3):C_2$ |
$C_3^2:\GL(2,3)$ |
$((C_3^2:Q_8):C_3):C_2$ |
$1$ |
$2$ |
8.37636000000.12t213.a.a |
$8$ |
$ 2^{8} \cdot 5^{6} \cdot 97^{2}$ |
$3$ |
9.5.146027680000.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.40575253489.12t213.a.a |
$8$ |
$ 17^{6} \cdot 41^{2}$ |
$2$ |
9.5.5756350841.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.42786095104.12t213.a.a |
$8$ |
$ 2^{22} \cdot 101^{2}$ |
$2$ |
9.1.16880451584.2 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.44899914816.12t213.a.a |
$8$ |
$ 2^{6} \cdot 3^{10} \cdot 109^{2}$ |
$3$ |
9.1.60420873024.1 |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$S_3\wr S_3$ |
$1$ |
$0$ |
8.45537538411.9t26.a.a |
$8$ |
$ 3571^{3}$ |
$1$ |
9.3.45537538411.1 |
$((C_3^2:Q_8):C_3):C_2$ |
$C_3^2:\GL(2,3)$ |
$((C_3^2:Q_8):C_3):C_2$ |
$1$ |
$2$ |
Next
Download
displayed columns for
results