Learn more

Refine search


Results (1-50 of 5990 matches)

Next   displayed columns for results
Galois conjugate representations are grouped into single lines.
Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
$8$ $ 5^{2} \cdot 7^{4} \cdot 131^{2}$ 9.1.1967079625.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 3^{4} \cdot 7^{2} \cdot 11^{2} \cdot 47^{2}$ 9.1.142195876977.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{10} \cdot 1229^{2}$ 9.3.118805247296.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{8} \cdot 3^{4} \cdot 7^{2} \cdot 41^{2}$ 9.1.490197028608.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 7^{4} \cdot 19^{2} \cdot 53^{2}$ 9.1.7148031401.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 71^{2}$ 9.1.34359456000.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{8} \cdot 3^{4} \cdot 7^{2} \cdot 53^{2}$ 9.1.39217774848.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{14} \cdot 499^{2}$ 9.1.7952095936.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{8} \cdot 3^{6} \cdot 7^{2} \cdot 23^{2}$ 9.1.86537154816.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{8} \cdot 3^{4} \cdot 523^{2}$ 9.1.988800770304.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 11^{6} \cdot 61^{2}$ 9.1.3323228821.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{12} \cdot 3^{4} \cdot 11^{2} \cdot 13^{2}$ 9.1.17966327808.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{8} \cdot 3^{4} \cdot 587^{2}$ 9.1.155337218304.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{20} \cdot 5^{2} \cdot 17^{2}$ 9.1.20123648000.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 3^{10} \cdot 367^{2}$ 9.3.36035099127.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{8} \cdot 3^{4} \cdot 631^{2}$ 9.7.5209704158976.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{20} \cdot 3^{2} \cdot 31^{2}$ 9.1.26357170176.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 3^{12} \cdot 131^{2}$ 9.1.32257648686537.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{6} \cdot 523^{3}$ 9.3.9155562688.1 $((C_3^2:Q_8):C_3):C_2$ $1$ $2$
$8$ $ 3^{10} \cdot 397^{2}$ 9.1.45614093517.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{18} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2}$ 9.1.30371328000.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{12} \cdot 3^{6} \cdot 61^{2}$ 9.1.37653424128.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{18} \cdot 211^{2}$ 9.1.2404846336.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{8} \cdot 3^{6} \cdot 251^{2}$ 9.1.1311614290944.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{12} \cdot 3^{10} \cdot 7^{2}$ 9.1.186659085312.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{10} \cdot 59^{4}$ 9.1.43192866448384.1 $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ $1$ $0$
$8$ $ 3^{10} \cdot 11^{2} \cdot 43^{2}$ 9.1.77145562593.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{6} \cdot 3^{6} \cdot 13^{2} \cdot 41^{2}$ 9.1.784958361408.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{8} \cdot 3^{6} \cdot 271^{2}$ 9.3.412698468096.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{8} \cdot 3^{6} \cdot 5^{4} \cdot 11^{2}$ 9.1.431244000000.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{18} \cdot 3^{10}$ 9.1.13060694016.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{10} \cdot 3^{4} \cdot 433^{2}$ 9.1.561135078144.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 11^{3} \cdot 233^{3}$ 9.3.16836267547.1 $((C_3^2:Q_8):C_3):C_2$ $1$ $2$
$8$ $ 2^{20} \cdot 127^{2}$ 9.3.67121414144.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 3^{7} \cdot 53^{4}$ 9.3.17256481947.1 $((C_3^2:Q_8):C_3):C_2$ $1$ $-2$
$8$ $ 3^{7} \cdot 53^{4}$ 9.3.17256481947.1 $((C_3^2:Q_8):C_3):C_2$ $1$ $2$
$8$ $ 2^{12} \cdot 3^{6} \cdot 7^{2} \cdot 11^{2}$ 9.1.2366667072.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 3^{9} \cdot 97^{3}$ 9.3.17964142659.1 $((C_3^2:Q_8):C_3):C_2$ $1$ $2$
$8$ $ 3^{12} \cdot 229^{2}$ 9.7.236372930487.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{8} \cdot 3^{6} \cdot 409^{2}$ 9.1.1418714175744.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{10} \cdot 5^{4} \cdot 223^{2}$ 9.5.354866144000.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{6} \cdot 3^{6} \cdot 5^{2} \cdot 167^{2}$ 9.3.3018036024000.2 $S_3\wr S_3$ $1$ $0$
$8$ $ 3^{12} \cdot 257^{2}$ 9.7.334110914019.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 3^{9} \cdot 37^{4}$ 9.3.36889110963.1 $((C_3^2:Q_8):C_3):C_2$ $1$ $-2$
$8$ $ 3^{9} \cdot 37^{4}$ 9.3.36889110963.1 $((C_3^2:Q_8):C_3):C_2$ $1$ $2$
$8$ $ 2^{8} \cdot 5^{6} \cdot 97^{2}$ 9.5.146027680000.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 17^{6} \cdot 41^{2}$ 9.5.5756350841.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{22} \cdot 101^{2}$ 9.1.16880451584.2 $S_3\wr S_3$ $1$ $0$
$8$ $ 2^{6} \cdot 3^{10} \cdot 109^{2}$ 9.1.60420873024.1 $S_3\wr S_3$ $1$ $0$
$8$ $ 3571^{3}$ 9.3.45537538411.1 $((C_3^2:Q_8):C_3):C_2$ $1$ $2$
Next   displayed columns for results