Galois conjugate representations are grouped into single lines.
Label |
Dimension |
Conductor |
Ramified prime count |
Artin stem field |
$G$ |
Projective image |
Container |
Ind |
$\chi(c)$ |
7.594823321.8t25.a.a |
$7$ |
$ 29^{6}$ |
$1$ |
8.0.594823321.1 |
$C_2^3:C_7$ |
$F_8$ |
$C_2^3:C_7$ |
$1$ |
$-1$ |
7.1817487424.8t36.a.a |
$7$ |
$ 2^{6} \cdot 73^{4}$ |
$2$ |
8.0.1817487424.1 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.9597924961.8t36.a.a |
$7$ |
$ 313^{4}$ |
$1$ |
8.0.9597924961.2 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.9597924961.8t36.b.a |
$7$ |
$ 313^{4}$ |
$1$ |
8.0.9597924961.1 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.18078415936.8t36.a.a |
$7$ |
$ 2^{6} \cdot 7^{10}$ |
$2$ |
8.0.18078415936.1 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.21956126976.16t713.a.a |
$7$ |
$ 2^{8} \cdot 3^{6} \cdot 7^{6}$ |
$3$ |
8.2.153692888832.1 |
$\PGL(2,7)$ |
$\SO(3,7)$ |
$\SO(3,7)$ |
$1$ |
$-1$ |
7.29079798784.8t36.a.a |
$7$ |
$ 2^{10} \cdot 73^{4}$ |
$2$ |
8.0.29079798784.1 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.32941720000.8t43.a.a |
$7$ |
$ 2^{6} \cdot 5^{4} \cdot 7^{7}$ |
$3$ |
8.2.32941720000.1 |
$\PGL(2,7)$ |
$\SO(3,7)$ |
$\PGL(2,7)$ |
$1$ |
$1$ |
7.37822859361.8t37.a.a |
$7$ |
$ 3^{8} \cdot 7^{8}$ |
$2$ |
7.3.4202539929.3 |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$\PSL(2,7)$ |
$1$ |
$-1$ |
7.40904253504.8t37.a.a |
$7$ |
$ 2^{6} \cdot 3^{4} \cdot 53^{4}$ |
$3$ |
7.3.4544917056.1 |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$\PSL(2,7)$ |
$1$ |
$-1$ |
7.72313663744.8t36.a.a |
$7$ |
$ 2^{8} \cdot 7^{10}$ |
$2$ |
8.0.72313663744.1 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.72313663744.56.a.a |
$7$ |
$ 2^{8} \cdot 7^{10}$ |
$2$ |
9.1.72313663744.1 |
$\mathrm{P}\Gamma\mathrm{L}(2,8)$ |
$\PSL(2,8).C_3$ |
56 |
$1$ |
$-1$ |
7.82653950016.8t37.a.a |
$7$ |
$ 2^{6} \cdot 3^{6} \cdot 11^{6}$ |
$3$ |
7.3.9183772224.1 |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$\PSL(2,7)$ |
$1$ |
$-1$ |
7.89685275625.8t37.a.a |
$7$ |
$ 3^{4} \cdot 5^{4} \cdot 11^{6}$ |
$3$ |
7.3.9965030625.2 |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$\PSL(2,7)$ |
$1$ |
$-1$ |
7.100367308864.8t36.a.a |
$7$ |
$ 2^{6} \cdot 199^{4}$ |
$2$ |
8.0.100367308864.1 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.116101021696.8t37.a.a |
$7$ |
$ 2^{16} \cdot 11^{6}$ |
$2$ |
7.3.1814078464.1 |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$\PSL(2,7)$ |
$1$ |
$-1$ |
7.116319195136.8t36.a.a |
$7$ |
$ 2^{12} \cdot 73^{4}$ |
$2$ |
8.0.116319195136.1 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.116319195136.8t36.b.a |
$7$ |
$ 2^{12} \cdot 73^{4}$ |
$2$ |
8.0.116319195136.3 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.119538913536.8t37.a.a |
$7$ |
$ 2^{8} \cdot 3^{4} \cdot 7^{8}$ |
$3$ |
7.3.3320525376.3 |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$\PSL(2,7)$ |
$1$ |
$-1$ |
7.126548911552.24t283.a.a 7.126548911552.24t283.a.b |
$7$ |
$ 2^{6} \cdot 7^{11}$ |
$2$ |
8.0.18078415936.1 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$F_8:C_3$ |
$0$ |
$-1$ |
7.132676581952.24t283.a.a 7.132676581952.24t283.a.b |
$7$ |
$ 2^{6} \cdot 73^{5}$ |
$2$ |
8.0.1817487424.1 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$F_8:C_3$ |
$0$ |
$-1$ |
7.132705746944.8t48.a.a |
$7$ |
$ 2^{16} \cdot 1423^{2}$ |
$2$ |
8.8.132705746944.1 |
$C_2^3:\GL(3,2)$ |
$C_2^3.\PSL(2,7)$ |
$C_2^3:\GL(3,2)$ |
$1$ |
$7$ |
7.153692888832.8t43.a.a |
$7$ |
$ 2^{8} \cdot 3^{6} \cdot 7^{7}$ |
$3$ |
8.2.153692888832.1 |
$\PGL(2,7)$ |
$\SO(3,7)$ |
$\PGL(2,7)$ |
$1$ |
$1$ |
7.205885750000.8t43.a.a |
$7$ |
$ 2^{4} \cdot 5^{6} \cdot 7^{7}$ |
$3$ |
8.2.205885750000.1 |
$\PGL(2,7)$ |
$\SO(3,7)$ |
$\PGL(2,7)$ |
$1$ |
$1$ |
7.230592040000.16t713.a.a |
$7$ |
$ 2^{6} \cdot 5^{4} \cdot 7^{8}$ |
$3$ |
8.2.32941720000.1 |
$\PGL(2,7)$ |
$\SO(3,7)$ |
$\SO(3,7)$ |
$1$ |
$-1$ |
7.272225149504.8t36.a.a |
$7$ |
$ 2^{6} \cdot 7^{4} \cdot 11^{6}$ |
$3$ |
8.0.272225149504.1 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.272225149504.8t36.b.a |
$7$ |
$ 2^{6} \cdot 7^{4} \cdot 11^{6}$ |
$3$ |
8.0.272225149504.2 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.283449760000.8t37.a.a |
$7$ |
$ 2^{8} \cdot 5^{4} \cdot 11^{6}$ |
$3$ |
7.3.2834497600.2 |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$\PSL(2,7)$ |
$1$ |
$-1$ |
7.345808999872.8t43.a.a |
$7$ |
$ 2^{6} \cdot 3^{8} \cdot 7^{7}$ |
$3$ |
8.2.345808999872.1 |
$\PGL(2,7)$ |
$\SO(3,7)$ |
$\PGL(2,7)$ |
$1$ |
$1$ |
7.375226779375.8t43.a.a |
$7$ |
$ 3^{6} \cdot 5^{4} \cdot 7^{7}$ |
$3$ |
8.2.375226779375.1 |
$\PGL(2,7)$ |
$\SO(3,7)$ |
$\PGL(2,7)$ |
$1$ |
$1$ |
7.377801998336.8t37.a.a |
$7$ |
$ 2^{16} \cdot 7^{8}$ |
$2$ |
7.3.1475789056.2 |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$\PSL(2,7)$ |
$1$ |
$-1$ |
7.387790161984.8t36.a.a |
$7$ |
$ 2^{6} \cdot 3^{8} \cdot 31^{4}$ |
$3$ |
8.0.387790161984.1 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.401469235456.8t36.a.a |
$7$ |
$ 2^{8} \cdot 199^{4}$ |
$2$ |
8.0.401469235456.1 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.401469235456.8t36.b.a |
$7$ |
$ 2^{8} \cdot 199^{4}$ |
$2$ |
8.0.401469235456.2 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.506195646208.24t283.a.a 7.506195646208.24t283.a.b |
$7$ |
$ 2^{8} \cdot 7^{11}$ |
$2$ |
8.0.72313663744.1 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$F_8:C_3$ |
$0$ |
$-1$ |
7.506195646208.168.a.a 7.506195646208.168.a.b |
$7$ |
$ 2^{8} \cdot 7^{11}$ |
$2$ |
9.1.72313663744.1 |
$\mathrm{P}\Gamma\mathrm{L}(2,8)$ |
$\PSL(2,8).C_3$ |
168 |
$0$ |
$-1$ |
7.525346636864.8t36.a.a |
$7$ |
$ 2^{6} \cdot 7^{4} \cdot 43^{4}$ |
$3$ |
8.0.525346636864.3 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.525346636864.8t36.b.a |
$7$ |
$ 2^{6} \cdot 7^{4} \cdot 43^{4}$ |
$3$ |
8.0.525346636864.4 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.525346636864.8t36.c.a |
$7$ |
$ 2^{6} \cdot 7^{4} \cdot 43^{4}$ |
$3$ |
8.0.525346636864.5 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.591559418641.8t36.a.a |
$7$ |
$ 877^{4}$ |
$1$ |
8.0.591559418641.1 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.591559418641.8t36.b.a |
$7$ |
$ 877^{4}$ |
$1$ |
8.0.591559418641.2 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.646274503744.8t37.a.a |
$7$ |
$ 2^{6} \cdot 317^{4}$ |
$2$ |
7.3.6431296.1 |
$\GL(3,2)$ |
$\PSL(2,7)$ |
$\PSL(2,7)$ |
$1$ |
$-1$ |
7.705277476864.56.a.a 7.705277476864.56.a.b 7.705277476864.56.a.c |
$7$ |
$ 2^{14} \cdot 3^{16}$ |
$2$ |
9.1.514147280633856.1 |
$\PSL(2,8)$ |
$\PSL(2,8)$ |
56 |
$1$ |
$-1$ |
7.777431921841.8t36.a.a |
$7$ |
$ 3^{4} \cdot 313^{4}$ |
$2$ |
8.0.777431921841.1 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.777431921841.8t36.b.a |
$7$ |
$ 3^{4} \cdot 313^{4}$ |
$2$ |
8.0.777431921841.2 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.113...000.8t36.a.a |
$7$ |
$ 2^{6} \cdot 5^{4} \cdot 73^{4}$ |
$3$ |
8.0.1135929640000.1 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.115...904.8t36.a.a |
$7$ |
$ 2^{12} \cdot 7^{10}$ |
$2$ |
8.0.1157018619904.1 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.115...904.8t36.b.a |
$7$ |
$ 2^{12} \cdot 7^{10}$ |
$2$ |
8.0.1157018619904.2 |
$C_2^3:(C_7: C_3)$ |
$F_8:C_3$ |
$C_2^3:(C_7: C_3)$ |
$1$ |
$-1$ |
7.134...625.16t713.a.a |
$7$ |
$ 3^{6} \cdot 5^{6} \cdot 7^{6}$ |
$3$ |
8.2.9380669484375.1 |
$\PGL(2,7)$ |
$\SO(3,7)$ |
$\SO(3,7)$ |
$1$ |
$-1$ |
7.144...000.16t713.a.a |
$7$ |
$ 2^{4} \cdot 5^{6} \cdot 7^{8}$ |
$3$ |
8.2.205885750000.1 |
$\PGL(2,7)$ |
$\SO(3,7)$ |
$\SO(3,7)$ |
$1$ |
$-1$ |