Learn more

Refine search


Results (23 matches)

Galois conjugate representations are grouped into single lines.
Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
64.880...576.168.a.a $64$ $ 2^{138} \cdot 3217^{54}$ 8.0.72641749645773438449680384.1 $A_8$ $1$ $0$
64.159...064.168.a.a $64$ $ 2^{172} \cdot 51473^{54}$ 8.0.19501894337558159417628591379185664.1 $A_8$ $1$ $0$
64.295...816.168.a.a $64$ $ 2^{244} \cdot 7^{80} \cdot 11^{54} \cdot 191^{54}$ 8.0.133100753213221593424899389161209856.1 $A_8$ $1$ $0$
64.239...984.168.a.a $64$ $ 2^{184} \cdot 29^{54} \cdot 3917^{54}$ 8.0.2252730971538337484304305478905626624.1 $A_8$ $1$ $0$
64.135...584.168.a.a $64$ $ 2^{244} \cdot 113^{54} \cdot 911^{54}$ 8.0.319463173328482073097337827900516204544.1 $A_8$ $1$ $0$
64.136...704.168.a.a $64$ $ 2^{244} \cdot 102953^{54}$ 8.0.319649416647163494229316963315979649024.1 $A_8$ $1$ $0$
64.268...096.168.a.a $64$ $ 2^{176} \cdot 11^{54} \cdot 74869^{54}$ 8.0.1277992348243533546275162547509832257536.1 $A_8$ $1$ $0$
64.269...264.168.a.a $64$ $ 2^{176} \cdot 23^{54} \cdot 35809^{54}$ 8.0.5113757317969899544771546325450569302016.1 $A_8$ $1$ $0$
64.719...104.168.a.a $64$ $ 2^{204} \cdot 823547^{54}$ 8.0.81784359890073480322911752930604437733376.1 $A_8$ $1$ $0$
64.721...296.168.a.a $64$ $ 2^{204} \cdot 43^{54} \cdot 107^{54} \cdot 179^{54}$ 8.0.81803428774472904272307991671908472193024.1 $A_8$ $1$ $0$
64.724...384.168.a.a $64$ $ 2^{204} \cdot 823643^{54}$ 8.0.81841577658693500678182700989203572064256.1 $A_8$ $1$ $0$
64.222...544.168.a.a $64$ $ 2^{184} \cdot 3294173^{54}$ 8.0.1339918344154038594028110691225010840890507264.1 $A_8$ $1$ $0$
64.222...736.168.a.a $64$ $ 2^{184} \cdot 11^{54} \cdot 299471^{54}$ 8.0.1339937868468943908837290142533567581866950656.1 $A_8$ $1$ $0$
64.533...624.168.a.a $64$ $ 2^{176} \cdot 11^{54} \cdot 435593^{54}$ 8.0.3172352108695376607450650959096645338500694016.1 $A_8$ $1$ $0$
64.402...144.168.a.a $64$ $ 2^{192} \cdot 7^{80} \cdot 268913^{54}$ 8.0.36574214064047828349270556528863627894423814144.1 $A_8$ $1$ $0$
64.185...536.168.a.a $64$ $ 2^{192} \cdot 67^{54} \cdot 193^{54} \cdot 1019^{54}$ 8.0.87812768645884871208063446530730170282275531390976.1 $A_8$ $1$ $0$
64.185...024.168.a.a $64$ $ 2^{192} \cdot 701^{54} \cdot 18797^{54}$ 8.0.87813088530439533539051393535468530591915378212864.1 $A_8$ $1$ $0$
64.185...744.168.a.a $64$ $ 2^{192} \cdot 11^{54} \cdot 151^{54} \cdot 7933^{54}$ 8.0.87813728302462049260764173611685476867240408121344.1 $A_8$ $1$ $0$
64.185...616.168.a.a $64$ $ 2^{192} \cdot 23^{54} \cdot 572903^{54}$ 8.0.87815967535129608031908549089667529769029306679296.1 $A_8$ $1$ $0$
64.199...536.168.a.a $64$ $ 2^{176} \cdot 7^{80} \cdot 1075649^{54}$ 8.0.2340710530180884465731804242655471841228462751744.1 $A_8$ $1$ $0$
64.916...176.168.a.a $64$ $ 2^{176} \cdot 52706761^{54}$ 8.0.5620020392178081715128903113480438691650659827318784.1 $A_8$ $1$ $0$
64.916...024.168.a.a $64$ $ 2^{176} \cdot 23^{54} \cdot 43^{54} \cdot 137^{54} \cdot 389^{54}$ 8.0.5620030628480917722529796097626934820084447048892416.1 $A_8$ $1$ $0$
64.916...344.168.a.a $64$ $ 2^{176} \cdot 29^{54} \cdot 37^{54} \cdot 49121^{54}$ 8.0.5620066455663197695561554590870531303687507769819136.1 $A_8$ $1$ $0$