Learn more about

Refine search


Results (23 matches)

Galois conjugate representations are grouped into single lines.
Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
64.880...576.168.a.a $64$ $ 2^{138} \cdot 3217^{54}$ x8 - 4x7 + 3217 $A_8$ $1$ $0$
64.159...064.168.a.a $64$ $ 2^{172} \cdot 51473^{54}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823561 $A_8$ $1$ $0$
64.295...816.168.a.a $64$ $ 2^{244} \cdot 7^{80} \cdot 11^{54} \cdot 191^{54}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823585 $A_8$ $1$ $0$
64.239...984.168.a.a $64$ $ 2^{184} \cdot 29^{54} \cdot 3917^{54}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210826816 $A_8$ $1$ $0$
64.135...584.168.a.a $64$ $ 2^{244} \cdot 113^{54} \cdot 911^{54}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823537 $A_8$ $1$ $0$
64.136...704.168.a.a $64$ $ 2^{244} \cdot 102953^{54}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823617 $A_8$ $1$ $0$
64.268...096.168.a.a $64$ $ 2^{176} \cdot 11^{54} \cdot 74869^{54}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823552 $A_8$ $1$ $0$
64.269...264.168.a.a $64$ $ 2^{176} \cdot 23^{54} \cdot 35809^{54}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823600 $A_8$ $1$ $0$
64.719...104.168.a.a $64$ $ 2^{204} \cdot 823547^{54}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823540 $A_8$ $1$ $0$
64.721...296.168.a.a $64$ $ 2^{204} \cdot 43^{54} \cdot 107^{54} \cdot 179^{54}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823572 $A_8$ $1$ $0$
64.724...384.168.a.a $64$ $ 2^{204} \cdot 823643^{54}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823636 $A_8$ $1$ $0$
64.222...544.168.a.a $64$ $ 2^{184} \cdot 3294173^{54}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825280 $A_8$ $1$ $0$
64.222...736.168.a.a $64$ $ 2^{184} \cdot 11^{54} \cdot 299471^{54}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825792 $A_8$ $1$ $0$
64.533...624.168.a.a $64$ $ 2^{176} \cdot 11^{54} \cdot 435593^{54}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825220 $A_8$ $1$ $0$
64.402...144.168.a.a $64$ $ 2^{192} \cdot 7^{80} \cdot 268913^{54}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210826000 $A_8$ $1$ $0$
64.185...536.168.a.a $64$ $ 2^{192} \cdot 67^{54} \cdot 193^{54} \cdot 1019^{54}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825232 $A_8$ $1$ $0$
64.185...024.168.a.a $64$ $ 2^{192} \cdot 701^{54} \cdot 18797^{54}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825360 $A_8$ $1$ $0$
64.185...744.168.a.a $64$ $ 2^{192} \cdot 11^{54} \cdot 151^{54} \cdot 7933^{54}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825616 $A_8$ $1$ $0$
64.185...616.168.a.a $64$ $ 2^{192} \cdot 23^{54} \cdot 572903^{54}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210826512 $A_8$ $1$ $0$
64.199...536.168.a.a $64$ $ 2^{176} \cdot 7^{80} \cdot 1075649^{54}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825412 $A_8$ $1$ $0$
64.916...176.168.a.a $64$ $ 2^{176} \cdot 52706761^{54}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825252 $A_8$ $1$ $0$
64.916...024.168.a.a $64$ $ 2^{176} \cdot 23^{54} \cdot 43^{54} \cdot 137^{54} \cdot 389^{54}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825316 $A_8$ $1$ $0$
64.916...344.168.a.a $64$ $ 2^{176} \cdot 29^{54} \cdot 37^{54} \cdot 49121^{54}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825540 $A_8$ $1$ $0$