Learn more about

Refine search


Results (23 matches)

Galois conjugate representations are grouped into single lines.
Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
56.118...336.105.a.a $56$ $ 2^{112} \cdot 3217^{48}$ x8 - 4x7 + 3217 $A_8$ $1$ $8$
56.498...664.105.a.a $56$ $ 2^{138} \cdot 51473^{48}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823561 $A_8$ $1$ $8$
56.276...296.105.a.a $56$ $ 2^{202} \cdot 7^{70} \cdot 11^{48} \cdot 191^{48}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823585 $A_8$ $1$ $8$
56.161...056.105.a.a $56$ $ 2^{148} \cdot 29^{48} \cdot 3917^{48}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210826816 $A_8$ $1$ $8$
56.258...504.105.a.a $56$ $ 2^{202} \cdot 113^{48} \cdot 911^{48}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823537 $A_8$ $1$ $8$
56.259...744.105.a.a $56$ $ 2^{202} \cdot 102953^{48}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823617 $A_8$ $1$ $8$
56.128...424.105.a.a $56$ $ 2^{150} \cdot 23^{48} \cdot 35809^{48}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823600 $A_8$ $1$ $8$
56.205...264.105.a.a $56$ $ 2^{154} \cdot 11^{48} \cdot 74869^{48}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823552 $A_8$ $1$ $8$
56.537...456.105.a.a $56$ $ 2^{172} \cdot 823547^{48}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823540 $A_8$ $1$ $8$
56.538...256.105.a.a $56$ $ 2^{172} \cdot 43^{48} \cdot 107^{48} \cdot 179^{48}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823572 $A_8$ $1$ $8$
56.540...896.105.a.a $56$ $ 2^{172} \cdot 823643^{48}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823636 $A_8$ $1$ $8$
56.253...136.105.a.a $56$ $ 2^{148} \cdot 3294173^{48}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825280 $A_8$ $1$ $8$
56.253...696.105.a.a $56$ $ 2^{148} \cdot 11^{48} \cdot 299471^{48}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825792 $A_8$ $1$ $8$
56.102...296.105.a.a $56$ $ 2^{144} \cdot 11^{48} \cdot 435593^{48}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825220 $A_8$ $1$ $8$
56.548...144.105.a.a $56$ $ 2^{156} \cdot 7^{70} \cdot 268913^{48}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210826000 $A_8$ $1$ $8$
56.514...416.105.a.a $56$ $ 2^{156} \cdot 67^{48} \cdot 193^{48} \cdot 1019^{48}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825232 $A_8$ $1$ $8$
56.514...696.105.a.a $56$ $ 2^{156} \cdot 701^{48} \cdot 18797^{48}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825360 $A_8$ $1$ $8$
56.514...656.105.a.a $56$ $ 2^{156} \cdot 11^{48} \cdot 151^{48} \cdot 7933^{48}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825616 $A_8$ $1$ $8$
56.514...576.105.a.a $56$ $ 2^{156} \cdot 23^{48} \cdot 572903^{48}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210826512 $A_8$ $1$ $8$
56.106...784.105.a.a $56$ $ 2^{144} \cdot 7^{70} \cdot 1075649^{48}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825412 $A_8$ $1$ $8$
56.995...896.105.a.a $56$ $ 2^{144} \cdot 52706761^{48}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825252 $A_8$ $1$ $8$
56.995...496.105.a.a $56$ $ 2^{144} \cdot 23^{48} \cdot 43^{48} \cdot 137^{48} \cdot 389^{48}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825316 $A_8$ $1$ $8$
56.995...256.105.a.a $56$ $ 2^{144} \cdot 29^{48} \cdot 37^{48} \cdot 49121^{48}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825540 $A_8$ $1$ $8$