Learn more

Refine search


Results (23 matches)

Galois conjugate representations are grouped into single lines.
Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
56.118...336.105.a.a $56$ $ 2^{112} \cdot 3217^{48}$ 8.0.72641749645773438449680384.1 $A_8$ $1$ $8$
56.498...664.105.a.a $56$ $ 2^{138} \cdot 51473^{48}$ 8.0.19501894337558159417628591379185664.1 $A_8$ $1$ $8$
56.276...296.105.a.a $56$ $ 2^{202} \cdot 7^{70} \cdot 11^{48} \cdot 191^{48}$ 8.0.133100753213221593424899389161209856.1 $A_8$ $1$ $8$
56.161...056.105.a.a $56$ $ 2^{148} \cdot 29^{48} \cdot 3917^{48}$ 8.0.2252730971538337484304305478905626624.1 $A_8$ $1$ $8$
56.258...504.105.a.a $56$ $ 2^{202} \cdot 113^{48} \cdot 911^{48}$ 8.0.319463173328482073097337827900516204544.1 $A_8$ $1$ $8$
56.259...744.105.a.a $56$ $ 2^{202} \cdot 102953^{48}$ 8.0.319649416647163494229316963315979649024.1 $A_8$ $1$ $8$
56.128...424.105.a.a $56$ $ 2^{150} \cdot 23^{48} \cdot 35809^{48}$ 8.0.5113757317969899544771546325450569302016.1 $A_8$ $1$ $8$
56.205...264.105.a.a $56$ $ 2^{154} \cdot 11^{48} \cdot 74869^{48}$ 8.0.1277992348243533546275162547509832257536.1 $A_8$ $1$ $8$
56.537...456.105.a.a $56$ $ 2^{172} \cdot 823547^{48}$ 8.0.81784359890073480322911752930604437733376.1 $A_8$ $1$ $8$
56.538...256.105.a.a $56$ $ 2^{172} \cdot 43^{48} \cdot 107^{48} \cdot 179^{48}$ 8.0.81803428774472904272307991671908472193024.1 $A_8$ $1$ $8$
56.540...896.105.a.a $56$ $ 2^{172} \cdot 823643^{48}$ 8.0.81841577658693500678182700989203572064256.1 $A_8$ $1$ $8$
56.253...136.105.a.a $56$ $ 2^{148} \cdot 3294173^{48}$ 8.0.1339918344154038594028110691225010840890507264.1 $A_8$ $1$ $8$
56.253...696.105.a.a $56$ $ 2^{148} \cdot 11^{48} \cdot 299471^{48}$ 8.0.1339937868468943908837290142533567581866950656.1 $A_8$ $1$ $8$
56.102...296.105.a.a $56$ $ 2^{144} \cdot 11^{48} \cdot 435593^{48}$ 8.0.3172352108695376607450650959096645338500694016.1 $A_8$ $1$ $8$
56.548...144.105.a.a $56$ $ 2^{156} \cdot 7^{70} \cdot 268913^{48}$ 8.0.36574214064047828349270556528863627894423814144.1 $A_8$ $1$ $8$
56.514...416.105.a.a $56$ $ 2^{156} \cdot 67^{48} \cdot 193^{48} \cdot 1019^{48}$ 8.0.87812768645884871208063446530730170282275531390976.1 $A_8$ $1$ $8$
56.514...696.105.a.a $56$ $ 2^{156} \cdot 701^{48} \cdot 18797^{48}$ 8.0.87813088530439533539051393535468530591915378212864.1 $A_8$ $1$ $8$
56.514...656.105.a.a $56$ $ 2^{156} \cdot 11^{48} \cdot 151^{48} \cdot 7933^{48}$ 8.0.87813728302462049260764173611685476867240408121344.1 $A_8$ $1$ $8$
56.514...576.105.a.a $56$ $ 2^{156} \cdot 23^{48} \cdot 572903^{48}$ 8.0.87815967535129608031908549089667529769029306679296.1 $A_8$ $1$ $8$
56.106...784.105.a.a $56$ $ 2^{144} \cdot 7^{70} \cdot 1075649^{48}$ 8.0.2340710530180884465731804242655471841228462751744.1 $A_8$ $1$ $8$
56.995...896.105.a.a $56$ $ 2^{144} \cdot 52706761^{48}$ 8.0.5620020392178081715128903113480438691650659827318784.1 $A_8$ $1$ $8$
56.995...496.105.a.a $56$ $ 2^{144} \cdot 23^{48} \cdot 43^{48} \cdot 137^{48} \cdot 389^{48}$ 8.0.5620030628480917722529796097626934820084447048892416.1 $A_8$ $1$ $8$
56.995...256.105.a.a $56$ $ 2^{144} \cdot 29^{48} \cdot 37^{48} \cdot 49121^{48}$ 8.0.5620066455663197695561554590870531303687507769819136.1 $A_8$ $1$ $8$