Learn more

Refine search


Results (1-50 of at least 1000)

Next
Galois conjugate representations are grouped into single lines.
Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
35.354...976.70.a.a $35$ $ 2^{30} \cdot 3^{50} \cdot 7^{28}$ 7.3.112021056.1 $A_7$ $1$ $-1$
35.206...384.70.a.a $35$ $ 2^{75} \cdot 3^{77}$ 7.1.90699264.1 $S_7$ $1$ $1$
35.245...344.70.a.a $35$ $ 2^{80} \cdot 3^{74}$ 7.1.60466176.2 $S_7$ $1$ $1$
35.272...416.126.a.a $35$ $ 2^{96} \cdot 3^{64}$ 7.1.13436928.1 $S_7$ $1$ $-1$
35.193...736.126.a.a $35$ $ 2^{102} \cdot 3^{62}$ 7.1.161243136.1 $S_7$ $1$ $-1$
35.217...328.70.a.a $35$ $ 2^{99} \cdot 3^{64}$ 7.1.13436928.1 $S_7$ $1$ $1$
35.515...296.70.a.a $35$ $ 2^{105} \cdot 3^{61}$ 7.1.161243136.1 $S_7$ $1$ $1$
35.156...016.126.a.a $35$ $ 2^{86} \cdot 3^{74}$ 7.1.60466176.2 $S_7$ $1$ $-1$
35.317...824.126.a.a $35$ $ 2^{84} \cdot 3^{78}$ 7.1.90699264.1 $S_7$ $1$ $-1$
35.160...384.70.a.a $35$ $ 2^{96} \cdot 3^{74}$ 7.1.60466176.1 $S_7$ $1$ $1$
35.542...296.70.a.a $35$ $ 2^{93} \cdot 3^{77}$ 7.1.90699264.2 $S_7$ $1$ $1$
35.642...536.126.a.a $35$ $ 2^{98} \cdot 3^{74}$ 7.1.241864704.1 $S_7$ $1$ $-1$
35.642...536.70.a.a $35$ $ 2^{98} \cdot 3^{74}$ 7.1.241864704.1 $S_7$ $1$ $1$
35.257...144.126.a.a $35$ $ 2^{100} \cdot 3^{74}$ 7.1.60466176.1 $S_7$ $1$ $-1$
35.257...144.70.a.a $35$ $ 2^{100} \cdot 3^{74}$ 7.1.241864704.2 $S_7$ $1$ $1$
35.867...736.70.a.a $35$ $ 2^{97} \cdot 3^{77}$ 7.1.1451188224.1 $S_7$ $1$ $1$
35.102...576.126.a.a $35$ $ 2^{102} \cdot 3^{74}$ 7.1.241864704.2 $S_7$ $1$ $-1$
35.173...472.70.a.a $35$ $ 2^{98} \cdot 3^{77}$ 7.1.725594112.1 $S_7$ $1$ $1$
35.294...824.70.a.a $35$ $ 2^{30} \cdot 3^{68} \cdot 11^{24}$ 7.3.50808384.1 $A_7$ $1$ $-1$
35.520...416.126.a.a $35$ $ 2^{98} \cdot 3^{78}$ 7.1.725594112.1 $S_7$ $1$ $-1$
35.520...416.126.b.a $35$ $ 2^{98} \cdot 3^{78}$ 7.1.1451188224.1 $S_7$ $1$ $-1$
35.832...656.126.a.a $35$ $ 2^{102} \cdot 3^{78}$ 7.1.90699264.2 $S_7$ $1$ $-1$
35.917...416.70.a.a $35$ $ 2^{30} \cdot 7^{18} \cdot 73^{24}$ 7.3.16711744.1 $A_7$ $1$ $-1$
35.116...471.70.a.a $35$ $ 13^{18} \cdot 17^{15} \cdot 127^{15}$ 7.1.364871.1 $S_7$ $1$ $1$
35.546...247.70.a.a $35$ $ 23^{15} \cdot 709^{18}$ 7.5.11561663.1 $S_7$ $1$ $5$
35.123...888.70.a.a $35$ $ 2^{54} \cdot 8363^{15}$ 7.1.535232.1 $S_7$ $1$ $1$
35.629...343.70.a.a $35$ $ 7^{18} \cdot 31^{15} \cdot 353^{15}$ 7.1.536207.1 $S_7$ $1$ $1$
35.103...367.70.a.a $35$ $ 7^{15} \cdot 29^{24} \cdot 89^{15}$ 7.1.523943.1 $S_7$ $1$ $1$
35.149...991.70.a.a $35$ $ 11^{24} \cdot 3511^{15}$ 7.1.424831.1 $S_7$ $1$ $1$
35.253...375.70.a.a $35$ $ 5^{24} \cdot 37^{15} \cdot 347^{15}$ 7.1.320975.1 $S_7$ $1$ $1$
35.351...721.126.a.a $35$ $ 23^{20} \cdot 709^{18}$ 7.5.11561663.1 $S_7$ $1$ $-5$
35.985...943.70.a.a $35$ $ 184607^{15}$ 7.1.184607.1 $S_7$ $1$ $1$
35.196...143.70.a.a $35$ $ 193327^{15}$ 7.1.193327.1 $S_7$ $1$ $1$
35.201...943.70.a.a $35$ $ 193607^{15}$ 7.1.193607.1 $S_7$ $1$ $1$
35.244...143.70.a.a $35$ $ 29^{15} \cdot 6763^{15}$ 7.1.196127.1 $S_7$ $1$ $1$
35.317...399.70.a.a $35$ $ 199559^{15}$ 7.1.199559.1 $S_7$ $1$ $1$
35.363...151.70.a.a $35$ $ 7^{24} \cdot 8951^{15}$ 7.1.438599.1 $S_7$ $1$ $1$
35.371...551.70.a.a $35$ $ 17^{15} \cdot 11863^{15}$ 7.1.201671.1 $S_7$ $1$ $1$
35.393...551.70.a.a $35$ $ 202471^{15}$ 7.1.202471.1 $S_7$ $1$ $1$
35.586...151.70.a.a $35$ $ 11^{15} \cdot 41^{15} \cdot 461^{15}$ 7.1.207911.1 $S_7$ $1$ $1$
35.775...951.70.a.a $35$ $ 19^{15} \cdot 11149^{15}$ 7.1.211831.1 $S_7$ $1$ $1$
35.943...943.70.a.a $35$ $ 214607^{15}$ 7.1.214607.1 $S_7$ $1$ $1$
35.187...343.70.a.a $35$ $ 277^{15} \cdot 811^{15}$ 7.1.224647.1 $S_7$ $1$ $1$
35.223...743.70.a.a $35$ $ 167^{15} \cdot 1361^{15}$ 7.1.227287.1 $S_7$ $1$ $1$
35.438...751.70.a.a $35$ $ 23^{15} \cdot 10337^{15}$ 7.1.237751.1 $S_7$ $1$ $1$
35.495...623.70.a.a $35$ $ 3^{48} \cdot 7127^{15}$ 7.1.577287.1 $S_7$ $1$ $1$
35.577...843.70.a.a $35$ $ 242147^{15}$ 7.1.242147.1 $S_7$ $1$ $1$
35.586...423.70.a.a $35$ $ 3^{48} \cdot 7207^{15}$ 7.1.583767.1 $S_7$ $1$ $1$
35.607...051.70.a.a $35$ $ 242971^{15}$ 7.1.242971.1 $S_7$ $1$ $1$
35.896...817.70.a.a $35$ $ 11^{18} \cdot 14033^{15}$ 7.3.1697993.1 $S_7$ $1$ $-1$
Next