Learn more about

Refine search


Results (23 matches)

Galois conjugate representations are grouped into single lines.
Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
28.278...936.56.a.a $28$ $ 2^{64} \cdot 3217^{24}$ x8 - 4x7 + 3217 $A_8$ $1$ $-4$
28.144...816.56.a.a $28$ $ 2^{80} \cdot 51473^{24}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823561 $A_8$ $1$ $-4$
28.384...776.56.a.a $28$ $ 2^{110} \cdot 7^{34} \cdot 11^{24} \cdot 191^{24}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823585 $A_8$ $1$ $-4$
28.412...016.56.a.a $28$ $ 2^{84} \cdot 29^{24} \cdot 3917^{24}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210826816 $A_8$ $1$ $-4$
28.260...024.56.a.a $28$ $ 2^{110} \cdot 113^{24} \cdot 911^{24}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823537 $A_8$ $1$ $-4$
28.260...944.56.a.a $28$ $ 2^{110} \cdot 102953^{24}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823617 $A_8$ $1$ $-4$
28.279...816.56.a.a $28$ $ 2^{68} \cdot 11^{24} \cdot 74869^{24}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823552 $A_8$ $1$ $-4$
28.448...296.56.a.a $28$ $ 2^{72} \cdot 23^{24} \cdot 35809^{24}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823600 $A_8$ $1$ $-4$
28.732...384.56.a.a $28$ $ 2^{86} \cdot 823547^{24}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823540 $A_8$ $1$ $-4$
28.733...984.56.a.a $28$ $ 2^{86} \cdot 43^{24} \cdot 107^{24} \cdot 179^{24}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823572 $A_8$ $1$ $-4$
28.735...664.56.a.a $28$ $ 2^{86} \cdot 823643^{24}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823636 $A_8$ $1$ $-4$
28.515...656.56.a.a $28$ $ 2^{84} \cdot 3294173^{24}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825280 $A_8$ $1$ $-4$
28.515...336.56.a.a $28$ $ 2^{84} \cdot 11^{24} \cdot 299471^{24}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825792 $A_8$ $1$ $-4$
28.648...304.56.a.a $28$ $ 2^{78} \cdot 11^{24} \cdot 435593^{24}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825220 $A_8$ $1$ $-4$
28.136...736.56.a.a $28$ $ 2^{90} \cdot 7^{34} \cdot 268913^{24}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210826000 $A_8$ $1$ $-4$
28.941...256.56.a.a $28$ $ 2^{78} \cdot 7^{34} \cdot 1075649^{24}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825412 $A_8$ $1$ $-4$
28.929...184.56.a.a $28$ $ 2^{90} \cdot 67^{24} \cdot 193^{24} \cdot 1019^{24}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825232 $A_8$ $1$ $-4$
28.929...344.56.a.a $28$ $ 2^{90} \cdot 701^{24} \cdot 18797^{24}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825360 $A_8$ $1$ $-4$
28.929...264.56.a.a $28$ $ 2^{90} \cdot 11^{24} \cdot 151^{24} \cdot 7933^{24}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825616 $A_8$ $1$ $-4$
28.929...304.56.a.a $28$ $ 2^{90} \cdot 23^{24} \cdot 572903^{24}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210826512 $A_8$ $1$ $-4$
28.638...504.56.a.a $28$ $ 2^{78} \cdot 52706761^{24}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825252 $A_8$ $1$ $-4$
28.638...704.56.a.a $28$ $ 2^{78} \cdot 23^{24} \cdot 43^{24} \cdot 137^{24} \cdot 389^{24}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825316 $A_8$ $1$ $-4$
28.638...024.56.a.a $28$ $ 2^{78} \cdot 29^{24} \cdot 37^{24} \cdot 49121^{24}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825540 $A_8$ $1$ $-4$