Learn more about

Refine search


Results (1-50 of at least 1000)

Next
Galois conjugate representations are grouped into single lines.
Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
21.179...056.42t299.a.a $21$ $ 2^{18} \cdot 3^{30} \cdot 7^{16}$ x7 - 3x6 + 3x5 + 3x4 - 9x3 + 3x2 + x - 3 $A_7$ $1$ $1$
21.185...416.56.a.a $21$ $ 2^{24} \cdot 7^{32}$ x9 - x8 - 4x7 + 28x3 + 26x2 + 9x + 1 $\mathrm{P}\Gamma\mathrm{L}(2,8)$ $1$ $-3$
21.259...144.42t418.a.a $21$ $ 2^{59} \cdot 3^{37}$ x7 - 2x6 + 6x5 - 10x4 + 14x3 - 12x2 + 4x + 4 $S_7$ $1$ $3$
21.277...936.84.a.a $21$ $ 2^{48} \cdot 3^{44}$ x7 - 3x5 - 2x4 + 3x3 + 12x2 + 19x + 6 $S_7$ $1$ $-3$
21.277...936.42t418.a.a $21$ $ 2^{48} \cdot 3^{44}$ x7 - 3x5 - 2x4 + 3x3 + 12x2 + 19x + 6 $S_7$ $1$ $3$
21.438...368.42t418.a.a $21$ $ 2^{55} \cdot 3^{40}$ x7 - 3x5 - x4 + 3x3 + 6x2 - x - 9 $S_7$ $1$ $3$
21.935...784.42t418.a.a $21$ $ 2^{45} \cdot 3^{47}$ x7 - x6 + 3x5 - 5x4 + 2x3 - 12x2 + x - 7 $S_7$ $1$ $3$
21.350...944.84.a.a $21$ $ 2^{58} \cdot 3^{40}$ x7 - 3x5 - x4 + 3x3 + 6x2 - x - 9 $S_7$ $1$ $-3$
21.622...456.84.a.a $21$ $ 2^{62} \cdot 3^{38}$ x7 - 2x6 + 6x5 - 10x4 + 14x3 - 12x2 + 4x + 4 $S_7$ $1$ $-3$
21.224...816.84.a.a $21$ $ 2^{48} \cdot 3^{48}$ x7 - x6 + 3x5 - 5x4 + 2x3 - 12x2 + x - 7 $S_7$ $1$ $-3$
21.709...616.84.a.a $21$ $ 2^{56} \cdot 3^{44}$ x7 - 2x6 + 3x5 + x4 - 5x3 + 12x2 - 7x + 5 $S_7$ $1$ $-3$
21.709...616.42t418.a.a $21$ $ 2^{56} \cdot 3^{44}$ x7 - 2x6 + 3x5 + x4 - 5x3 + 12x2 - 7x + 5 $S_7$ $1$ $3$
21.159...136.42t418.a.a $21$ $ 2^{54} \cdot 3^{46}$ x7 - 2x6 + 3x5 - 4x4 + 5x3 - 6x2 + 7x - 8 $S_7$ $1$ $3$
21.239...704.42t418.a.a $21$ $ 2^{53} \cdot 3^{47}$ x7 - 2x6 + 27x3 - 54x2 + 42x - 12 $S_7$ $1$ $3$
21.191...632.42t418.a.a $21$ $ 2^{56} \cdot 3^{47}$ x7 - x6 + 18x3 - 18x2 - 24x - 48 $S_7$ $1$ $3$
21.255...176.84.b.a $21$ $ 2^{58} \cdot 3^{46}$ x7 - 3x6 + 3x5 + x4 - 3x3 - 3x2 - 5x - 3 $S_7$ $1$ $-3$
21.255...176.42t418.a.a $21$ $ 2^{58} \cdot 3^{46}$ x7 - 3x6 + 3x5 + x4 - 3x3 - 3x2 - 5x - 3 $S_7$ $1$ $3$
21.255...176.84.a.a $21$ $ 2^{58} \cdot 3^{46}$ x7 - 2x6 + 3x5 - 4x4 + 5x3 - 6x2 + 7x - 8 $S_7$ $1$ $-3$
21.383...264.42t418.a.a $21$ $ 2^{57} \cdot 3^{47}$ x7 - x6 - x4 - 2x3 + 4x + 2 $S_7$ $1$ $3$
21.574...896.84.b.a $21$ $ 2^{56} \cdot 3^{48}$ x7 - x6 - x4 - 2x3 + 4x + 2 $S_7$ $1$ $-3$
21.574...896.84.a.a $21$ $ 2^{56} \cdot 3^{48}$ x7 - x6 + 18x3 - 18x2 - 24x - 48 $S_7$ $1$ $-3$
21.919...336.84.a.a $21$ $ 2^{60} \cdot 3^{48}$ x7 - 2x6 + 27x3 - 54x2 + 42x - 12 $S_7$ $1$ $-3$
21.132...249.84.a.a $21$ $ 23^{10} \cdot 709^{10}$ x7 - x6 - 3x5 + 5x4 + 2x3 - 8x2 - 2x + 1 $S_7$ $1$ $1$
21.118...104.42t299.a.a $21$ $ 2^{18} \cdot 3^{44} \cdot 11^{16}$ x7 - 2x6 + 2x + 2 $A_7$ $1$ $1$
21.305...727.42t418.a.a $21$ $ 23^{11} \cdot 709^{10}$ x7 - x6 - 3x5 + 5x4 + 2x3 - 8x2 - 2x + 1 $S_7$ $1$ $-1$
21.481...216.42t299.a.a $21$ $ 2^{18} \cdot 7^{10} \cdot 73^{16}$ x7 - 2x6 + 2x4 - 2x3 - 2x2 + 2x + 2 $A_7$ $1$ $1$
21.303...449.84.a.a $21$ $ 13^{10} \cdot 17^{10} \cdot 127^{10}$ x7 - x6 + 2x4 + 2x + 1 $S_7$ $1$ $-3$
21.153...904.42t210.a.a $21$ $ 2^{52} \cdot 1423^{10}$ x8 - 10x6 - 4x5 + 27x4 + 20x3 - 10x2 - 8x - 1 $C_2^3:\GL(3,2)$ $1$ $21$
21.654...391.42t418.a.a $21$ $ 13^{10} \cdot 17^{11} \cdot 127^{11}$ x7 - x6 + 2x4 + 2x + 1 $S_7$ $1$ $3$
21.179...576.84.a.a $21$ $ 2^{30} \cdot 8363^{10}$ x7 - x6 + 3x5 - 4x4 + 3x3 - 4x2 + 2x - 1 $S_7$ $1$ $-3$
21.695...001.84.a.a $21$ $ 7^{10} \cdot 31^{10} \cdot 353^{10}$ x7 - x6 + 2x5 + x4 + 2x2 + x + 1 $S_7$ $1$ $-3$
21.220...129.84.a.a $21$ $ 7^{10} \cdot 29^{16} \cdot 89^{10}$ x7 - 2x6 + 2x5 - x4 - x3 + 3x2 - 2x + 1 $S_7$ $1$ $-3$
21.768...849.84.a.a $21$ $ 11^{10} \cdot 14033^{10}$ x7 - 2x5 - 4x4 - x3 + 4x2 + 4x + 1 $S_7$ $1$ $1$
21.130...761.84.a.a $21$ $ 11^{16} \cdot 3511^{10}$ x7 - x6 - x4 + 2x3 - x2 + 2x - 1 $S_7$ $1$ $-3$
21.150...088.42t418.a.a $21$ $ 2^{30} \cdot 8363^{11}$ x7 - x6 + 3x5 - 4x4 + 3x3 - 4x2 + 2x - 1 $S_7$ $1$ $3$
21.185...625.84.a.a $21$ $ 5^{16} \cdot 37^{10} \cdot 347^{10}$ x7 - x6 + x5 - x4 + 2x2 - 2x + 1 $S_7$ $1$ $-3$
21.194...176.42t210.a.a $21$ $ 2^{48} \cdot 1423^{12}$ x8 - 10x6 - 4x5 + 27x4 + 20x3 - 10x2 - 8x - 1 $C_2^3:\GL(3,2)$ $1$ $21$
21.229...249.84.a.a $21$ $ 7^{10} \cdot 73^{10} \cdot 337^{10}$ x7 - 2x6 + 4x4 - 4x3 + 3x - 1 $S_7$ $1$ $1$
21.459...249.84.a.a $21$ $ 184607^{10}$ x7 - x6 - x5 + x4 - x2 + x + 1 $S_7$ $1$ $-3$
21.729...649.84.a.a $21$ $ 193327^{10}$ x7 - x6 + 2x4 - 2x3 + 2x - 1 $S_7$ $1$ $-3$
21.739...249.84.a.a $21$ $ 193607^{10}$ x7 - x4 - x3 + x2 + 1 $S_7$ $1$ $-3$
21.761...943.42t418.a.a $21$ $ 7^{10} \cdot 31^{11} \cdot 353^{11}$ x7 - x6 + 2x5 + x4 + 2x2 + x + 1 $S_7$ $1$ $3$
21.842...649.84.a.a $21$ $ 29^{10} \cdot 6763^{10}$ x7 - 2x6 + 2x5 - x4 + 2x2 - 2x + 1 $S_7$ $1$ $-3$
21.100...401.84.a.a $21$ $ 199559^{10}$ x7 - x6 + x3 - x + 1 $S_7$ $1$ $-3$
21.109...601.84.a.a $21$ $ 7^{16} \cdot 8951^{10}$ x7 - 2x6 + 2x5 - 2x4 + x3 + 1 $S_7$ $1$ $-3$
21.111...201.84.a.a $21$ $ 17^{10} \cdot 11863^{10}$ x7 - x6 + 2x5 - 2x4 + 2x3 - 2x2 + 2x - 1 $S_7$ $1$ $-3$
21.115...201.84.a.a $21$ $ 202471^{10}$ x7 - x6 - x5 + 2x4 - x2 + 1 $S_7$ $1$ $-3$
21.147...801.84.a.a $21$ $ 7^{10} \cdot 29633^{10}$ x7 - 2x5 - 2x4 + 4x2 + x - 1 $S_7$ $1$ $1$
21.150...601.84.a.a $21$ $ 11^{10} \cdot 41^{10} \cdot 461^{10}$ x7 - x5 - x4 - x3 + x2 + x + 1 $S_7$ $1$ $-3$
21.181...801.84.a.a $21$ $ 19^{10} \cdot 11149^{10}$ x7 - x6 + 2x5 - x4 + x2 - 2x + 1 $S_7$ $1$ $-3$
Next