Refine search
Results (1-50 of at least 1000)
NextGalois conjugate representations are grouped into single lines.
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ |
---|---|---|---|---|---|---|
21.179...056.42t299.a.a | $21$ | $ 2^{18} \cdot 3^{30} \cdot 7^{16}$ | 7.3.112021056.1 | $A_7$ | $1$ | $1$ |
21.185...416.56.a.a | $21$ | $ 2^{24} \cdot 7^{32}$ | 9.1.72313663744.1 | $\mathrm{P}\Gamma\mathrm{L}(2,8)$ | $1$ | $-3$ |
21.259...144.42t418.a.a | $21$ | $ 2^{59} \cdot 3^{37}$ | 7.1.161243136.1 | $S_7$ | $1$ | $3$ |
21.277...936.42t418.a.a | $21$ | $ 2^{48} \cdot 3^{44}$ | 7.1.60466176.2 | $S_7$ | $1$ | $3$ |
21.277...936.84.a.a | $21$ | $ 2^{48} \cdot 3^{44}$ | 7.1.60466176.2 | $S_7$ | $1$ | $-3$ |
21.438...368.42t418.a.a | $21$ | $ 2^{55} \cdot 3^{40}$ | 7.1.13436928.1 | $S_7$ | $1$ | $3$ |
21.935...784.42t418.a.a | $21$ | $ 2^{45} \cdot 3^{47}$ | 7.1.90699264.1 | $S_7$ | $1$ | $3$ |
21.350...944.84.a.a | $21$ | $ 2^{58} \cdot 3^{40}$ | 7.1.13436928.1 | $S_7$ | $1$ | $-3$ |
21.622...456.84.a.a | $21$ | $ 2^{62} \cdot 3^{38}$ | 7.1.161243136.1 | $S_7$ | $1$ | $-3$ |
21.224...816.84.a.a | $21$ | $ 2^{48} \cdot 3^{48}$ | 7.1.90699264.1 | $S_7$ | $1$ | $-3$ |
21.709...616.42t418.a.a | $21$ | $ 2^{56} \cdot 3^{44}$ | 7.1.60466176.1 | $S_7$ | $1$ | $3$ |
21.709...616.84.a.a | $21$ | $ 2^{56} \cdot 3^{44}$ | 7.1.60466176.1 | $S_7$ | $1$ | $-3$ |
21.159...136.42t418.a.a | $21$ | $ 2^{54} \cdot 3^{46}$ | 7.1.241864704.1 | $S_7$ | $1$ | $3$ |
21.239...704.42t418.a.a | $21$ | $ 2^{53} \cdot 3^{47}$ | 7.1.1451188224.1 | $S_7$ | $1$ | $3$ |
21.191...632.42t418.a.a | $21$ | $ 2^{56} \cdot 3^{47}$ | 7.1.725594112.1 | $S_7$ | $1$ | $3$ |
21.255...176.42t418.a.a | $21$ | $ 2^{58} \cdot 3^{46}$ | 7.1.241864704.2 | $S_7$ | $1$ | $3$ |
21.255...176.84.a.a | $21$ | $ 2^{58} \cdot 3^{46}$ | 7.1.241864704.1 | $S_7$ | $1$ | $-3$ |
21.255...176.84.b.a | $21$ | $ 2^{58} \cdot 3^{46}$ | 7.1.241864704.2 | $S_7$ | $1$ | $-3$ |
21.383...264.42t418.a.a | $21$ | $ 2^{57} \cdot 3^{47}$ | 7.1.90699264.2 | $S_7$ | $1$ | $3$ |
21.574...896.84.a.a | $21$ | $ 2^{56} \cdot 3^{48}$ | 7.1.725594112.1 | $S_7$ | $1$ | $-3$ |
21.574...896.84.b.a | $21$ | $ 2^{56} \cdot 3^{48}$ | 7.1.90699264.2 | $S_7$ | $1$ | $-3$ |
21.919...336.84.a.a | $21$ | $ 2^{60} \cdot 3^{48}$ | 7.1.1451188224.1 | $S_7$ | $1$ | $-3$ |
21.132...249.84.a.a | $21$ | $ 23^{10} \cdot 709^{10}$ | 7.5.11561663.1 | $S_7$ | $1$ | $1$ |
21.118...104.42t299.a.a | $21$ | $ 2^{18} \cdot 3^{44} \cdot 11^{16}$ | 7.3.50808384.1 | $A_7$ | $1$ | $1$ |
21.305...727.42t418.a.a | $21$ | $ 23^{11} \cdot 709^{10}$ | 7.5.11561663.1 | $S_7$ | $1$ | $-1$ |
21.481...216.42t299.a.a | $21$ | $ 2^{18} \cdot 7^{10} \cdot 73^{16}$ | 7.3.16711744.1 | $A_7$ | $1$ | $1$ |
21.303...449.84.a.a | $21$ | $ 13^{10} \cdot 17^{10} \cdot 127^{10}$ | 7.1.364871.1 | $S_7$ | $1$ | $-3$ |
21.153...904.42t210.a.a | $21$ | $ 2^{52} \cdot 1423^{10}$ | 8.8.132705746944.1 | $C_2^3:\GL(3,2)$ | $1$ | $21$ |
21.654...391.42t418.a.a | $21$ | $ 13^{10} \cdot 17^{11} \cdot 127^{11}$ | 7.1.364871.1 | $S_7$ | $1$ | $3$ |
21.179...576.84.a.a | $21$ | $ 2^{30} \cdot 8363^{10}$ | 7.1.535232.1 | $S_7$ | $1$ | $-3$ |
21.695...001.84.a.a | $21$ | $ 7^{10} \cdot 31^{10} \cdot 353^{10}$ | 7.1.536207.1 | $S_7$ | $1$ | $-3$ |
21.220...129.84.a.a | $21$ | $ 7^{10} \cdot 29^{16} \cdot 89^{10}$ | 7.1.523943.1 | $S_7$ | $1$ | $-3$ |
21.768...849.84.a.a | $21$ | $ 11^{10} \cdot 14033^{10}$ | 7.3.1697993.1 | $S_7$ | $1$ | $1$ |
21.130...761.84.a.a | $21$ | $ 11^{16} \cdot 3511^{10}$ | 7.1.424831.1 | $S_7$ | $1$ | $-3$ |
21.150...088.42t418.a.a | $21$ | $ 2^{30} \cdot 8363^{11}$ | 7.1.535232.1 | $S_7$ | $1$ | $3$ |
21.185...625.84.a.a | $21$ | $ 5^{16} \cdot 37^{10} \cdot 347^{10}$ | 7.1.320975.1 | $S_7$ | $1$ | $-3$ |
21.194...176.42t210.a.a | $21$ | $ 2^{48} \cdot 1423^{12}$ | 8.8.132705746944.1 | $C_2^3:\GL(3,2)$ | $1$ | $21$ |
21.229...249.84.a.a | $21$ | $ 7^{10} \cdot 73^{10} \cdot 337^{10}$ | 7.3.1205449.1 | $S_7$ | $1$ | $1$ |
21.459...249.84.a.a | $21$ | $ 184607^{10}$ | 7.1.184607.1 | $S_7$ | $1$ | $-3$ |
21.729...649.84.a.a | $21$ | $ 193327^{10}$ | 7.1.193327.1 | $S_7$ | $1$ | $-3$ |
21.739...249.84.a.a | $21$ | $ 193607^{10}$ | 7.1.193607.1 | $S_7$ | $1$ | $-3$ |
21.761...943.42t418.a.a | $21$ | $ 7^{10} \cdot 31^{11} \cdot 353^{11}$ | 7.1.536207.1 | $S_7$ | $1$ | $3$ |
21.842...649.84.a.a | $21$ | $ 29^{10} \cdot 6763^{10}$ | 7.1.196127.1 | $S_7$ | $1$ | $-3$ |
21.100...401.84.a.a | $21$ | $ 199559^{10}$ | 7.1.199559.1 | $S_7$ | $1$ | $-3$ |
21.109...601.84.a.a | $21$ | $ 7^{16} \cdot 8951^{10}$ | 7.1.438599.1 | $S_7$ | $1$ | $-3$ |
21.111...201.84.a.a | $21$ | $ 17^{10} \cdot 11863^{10}$ | 7.1.201671.1 | $S_7$ | $1$ | $-3$ |
21.115...201.84.a.a | $21$ | $ 202471^{10}$ | 7.1.202471.1 | $S_7$ | $1$ | $-3$ |
21.147...801.84.a.a | $21$ | $ 7^{10} \cdot 29633^{10}$ | 7.3.1452017.1 | $S_7$ | $1$ | $1$ |
21.150...601.84.a.a | $21$ | $ 11^{10} \cdot 41^{10} \cdot 461^{10}$ | 7.1.207911.1 | $S_7$ | $1$ | $-3$ |
21.181...801.84.a.a | $21$ | $ 19^{10} \cdot 11149^{10}$ | 7.1.211831.1 | $S_7$ | $1$ | $-3$ |