Learn more about

Refine search


Results (9 matches)

Galois conjugate representations are grouped into single lines.
Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
17.133...504.120.a.a 17.133...504.120.a.b 17.133...504.120.a.c 17.133...504.120.a.d $17$ $ 2^{30} \cdot 137^{8}$ x17 - 3x16 - 4x14 + 12x13 + 24x12 + 12x11 - 28x10 - 90x9 - 74x8 + 116x6 + 132x5 + 72x4 + 28x3 + 12x2 + 5x + 1 $\PSL(2,16)$ $1$ $1$
17.133...504.51.a.a $17$ $ 2^{30} \cdot 137^{8}$ x17 - 3x16 - 4x14 + 12x13 + 24x12 + 12x11 - 28x10 - 90x9 - 74x8 + 116x6 + 132x5 + 72x4 + 28x3 + 12x2 + 5x + 1 $\PSL(2,16)$ $1$ $1$
17.133...504.68.a.a 17.133...504.68.a.b $17$ $ 2^{30} \cdot 137^{8}$ x17 - 3x16 - 4x14 + 12x13 + 24x12 + 12x11 - 28x10 - 90x9 - 74x8 + 116x6 + 132x5 + 72x4 + 28x3 + 12x2 + 5x + 1 $\PSL(2,16)$ $1$ $1$
17.861...144.120.a.a 17.861...144.120.a.b 17.861...144.120.a.c 17.861...144.120.a.d $17$ $ 2^{30} \cdot 173^{8}$ x17 - x16 - 4x15 + 2x14 + 54x13 - 6x12 - 36x11 + 16x10 + 714x9 + 1238x8 + 484x7 - 764x6 - 1084x5 + 520x4 + 668x3 - 776x2 + 382x - 74 $\PSL(2,16)$ $1$ $1$
17.861...144.51.a.a $17$ $ 2^{30} \cdot 173^{8}$ x17 - x16 - 4x15 + 2x14 + 54x13 - 6x12 - 36x11 + 16x10 + 714x9 + 1238x8 + 484x7 - 764x6 - 1084x5 + 520x4 + 668x3 - 776x2 + 382x - 74 $\PSL(2,16)$ $1$ $1$
17.861...144.68.a.a 17.861...144.68.a.b $17$ $ 2^{30} \cdot 173^{8}$ x17 - x16 - 4x15 + 2x14 + 54x13 - 6x12 - 36x11 + 16x10 + 714x9 + 1238x8 + 484x7 - 764x6 - 1084x5 + 520x4 + 668x3 - 776x2 + 382x - 74 $\PSL(2,16)$ $1$ $1$
17.264...424.120.a.a 17.264...424.120.a.b 17.264...424.120.a.c 17.264...424.120.a.d $17$ $ 2^{30} \cdot 199^{8}$ x17 - 2x16 - 14x15 + 16x14 + 116x13 - 92x12 - 520x11 - 12x10 + 612x9 - 1488x8 - 1540x7 - 180x6 + 1580x5 - 1192x4 + 1608x3 - 844x2 + 122x - 40 $\PSL(2,16)$ $1$ $1$
17.264...424.51.a.a $17$ $ 2^{30} \cdot 199^{8}$ x17 - 2x16 - 14x15 + 16x14 + 116x13 - 92x12 - 520x11 - 12x10 + 612x9 - 1488x8 - 1540x7 - 180x6 + 1580x5 - 1192x4 + 1608x3 - 844x2 + 122x - 40 $\PSL(2,16)$ $1$ $1$
17.264...424.68.a.a 17.264...424.68.a.b $17$ $ 2^{30} \cdot 199^{8}$ x17 - 2x16 - 14x15 + 16x14 + 116x13 - 92x12 - 520x11 - 12x10 + 612x9 - 1488x8 - 1540x7 - 180x6 + 1580x5 - 1192x4 + 1608x3 - 844x2 + 122x - 40 $\PSL(2,16)$ $1$ $1$