Learn more about

Refine search


Results (1-50 of at least 1000)

Next
Galois conjugate representations are grouped into single lines.
Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
16.659...729.24t1334.a.a $16$ $ 3^{26} \cdot 11^{10}$ x9 - 3x7 - 9x6 + 3x5 + 18x4 + 15x3 - 9x2 - 27x + 6 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.393...824.24t1334.a.a $16$ $ 2^{34} \cdot 3^{28}$ x9 - 3x8 + 6x7 - 22x6 + 18x5 + 6x4 + 52x3 - 72x2 - 15x + 1 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.604...088.17t5.a.a $16$ $ 2^{79}$ x17 - 2x16 + 8x13 + 16x12 - 16x11 + 64x9 - 32x8 - 80x7 + 32x6 + 40x5 + 80x4 + 16x3 - 128x2 - 2x + 68 $F_{17}$ $1$ $0$
16.802...000.24t1334.a.a $16$ $ 2^{34} \cdot 3^{14} \cdot 5^{10}$ x9 - x8 - 6x7 + 18x6 - 48x4 + 72x3 - 72x + 72 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.111...616.24t1334.a.a $16$ $ 2^{26} \cdot 3^{34}$ x9 - 18x5 - 12x3 + 9x - 8 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.206...456.24t1334.a.a $16$ $ 2^{10} \cdot 3^{14} \cdot 29^{10}$ x9 - x8 - 13x7 + 2x6 + 38x5 + 17x4 + 47x3 + 71x2 - 4x + 31 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.303...929.24t1334.a.a $16$ $ 3^{18} \cdot 97^{8}$ x9 - 3x8 + 7x6 - 3x5 - 12x4 + 8x3 + 3x - 2 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.392...625.24t1334.a.a $16$ $ 3^{18} \cdot 5^{8} \cdot 11^{10}$ x9 - 3x8 + 16x6 - 33x5 - 36x4 + 120x3 + 99x2 - 297x + 77 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.512...721.24t1334.a.a $16$ $ 3^{26} \cdot 17^{10}$ x9 - 3x8 + 3x7 - 12x6 + 39x5 - 45x4 + 63x3 - 216x2 + 153x + 42 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.534...049.24t1334.b.a $16$ $ 3^{30} \cdot 11^{10}$ x9 - 3x8 + 9x6 + 3x5 - 18x4 - 6x3 + 6x2 - 9x + 4 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.534...049.24t1334.a.a $16$ $ 3^{30} \cdot 11^{10}$ x9 - 3x8 - 6x7 + 12x6 + 6x5 + 75x4 - 210x3 + 141x2 - 69x + 74 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.535...625.24t2912.a.a $16$ $ 5^{12} \cdot 23^{12}$ x9 - 2x8 + 7x7 - 14x6 + 23x5 - 31x4 + 30x3 - 20x2 + 8x - 1 $S_3\wr S_3$ $1$ $0$
16.536...144.24t1334.a.a $16$ $ 2^{10} \cdot 3^{8} \cdot 19^{14}$ x9 - 3x8 - x7 + 20x6 - 30x5 - 19x4 + 99x3 - 91x2 + 16x + 3 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.571...000.24t1334.a.a $16$ $ 2^{10} \cdot 3^{28} \cdot 5^{12}$ x9 - 3x8 - 3x7 + 26x6 - 18x5 - 57x4 + 73x3 + 9x2 - 42x + 13 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.573...744.24t1334.a.a $16$ $ 2^{10} \cdot 523^{8}$ x9 - x7 - 5x6 + x5 + 2x4 + 4x3 - 3x2 - x + 1 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.624...096.36t1252.b.a $16$ $ 2^{36} \cdot 3^{8} \cdot 7^{12}$ x6 - 4x4 - 2x3 + x2 - 2x - 5 $S_6$ $1$ $0$
16.734...504.24t1334.a.a $16$ $ 2^{26} \cdot 3^{18} \cdot 7^{10}$ x9 - 3x8 - 6x7 + 36x6 - 48x5 + 18x4 - 12x3 + 18x2 + 3x + 1 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.832...816.24t1334.a.a $16$ $ 2^{26} \cdot 3^{14} \cdot 11^{10}$ x9 - 6x7 - 6x6 + 12x5 + 24x4 - 18x3 - 24x2 + 42x + 36 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.891...000.36t1252.b.a $16$ $ 2^{36} \cdot 3^{12} \cdot 5^{12}$ x6 - 2x5 - x4 + 6x3 - 2x2 - 4x - 1 $S_6$ $1$ $0$
16.131...625.24t1334.a.a $16$ $ 3^{38} \cdot 5^{10}$ x9 - 3x8 - 3x7 + 8x6 - 3x5 - 3x4 + 13x3 + 9x + 9 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.136...104.24t1334.a.a $16$ $ 2^{22} \cdot 71^{10}$ x9 - 2x8 - 7x7 + 28x6 - 21x5 - 46x4 + 103x3 - 42x2 - 2x + 10 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.138...984.24t2912.a.a $16$ $ 2^{42} \cdot 11^{12}$ x9 + 3x7 - 2x6 + 3x5 - 4x4 - x3 + 2x2 - 4x + 4 $S_3\wr S_3$ $1$ $0$
16.152...561.24t2912.a.a $16$ $ 3^{16} \cdot 29^{12}$ x9 + 9x7 - 5x6 + 27x5 - 30x4 + 31x3 - 45x2 + 12x + 9 $S_3\wr S_3$ $1$ $0$
16.155...769.24t1334.a.a $16$ $ 3^{14} \cdot 71^{10}$ x9 - 2x8 + 7x7 - 11x6 - 8x5 - 14x4 - 8x3 - 104x2 + 13x + 87 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.167...000.36t1252.a.a $16$ $ 2^{42} \cdot 5^{18}$ x6 - 2x5 + 5x4 - 10x2 + 8x - 6 $S_6$ $1$ $0$
16.182...896.24t1334.a.a $16$ $ 2^{26} \cdot 3^{8} \cdot 23^{10}$ x9 - x8 + 4x7 - 4x6 - 10x5 + 34x4 - 88x3 + 168x2 - 239x + 103 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.192...736.24t1334.a.a $16$ $ 2^{10} \cdot 3^{14} \cdot 89^{8}$ x9 - 3x8 + 3x7 - 6x6 + 12x5 + 3x4 - 21x3 + 9x2 + 1 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.198...384.24t1334.a.a $16$ $ 2^{46} \cdot 3^{24}$ x9 - 4x6 - 6x5 + 12x4 + 4x3 - 12x2 + 3x + 4 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.212...304.24t2912.a.a $16$ $ 2^{34} \cdot 7^{8} \cdot 11^{8}$ x9 - x8 + 3x7 - 9x6 + 10x5 - 6x4 + 8x3 - 4x2 - 2x + 2 $S_3\wr S_3$ $1$ $0$
16.232...704.24t1334.a.a $16$ $ 2^{34} \cdot 3^{14} \cdot 7^{10}$ x9 - 3x8 + 6x7 - 6x6 - 24x5 + 84x4 - 150x3 + 150x2 - 93x + 27 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.383...016.24t1334.a.a $16$ $ 2^{10} \cdot 3^{14} \cdot 97^{8}$ x9 - x8 - 7x7 + 8x6 + 8x5 - x4 - 25x3 + 11x2 + 8x + 1 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.388...944.24t1334.a.a $16$ $ 2^{48} \cdot 13^{10}$ x9 - x8 - 2x7 + 14x6 - 5x5 + x4 - 10x3 - 2x2 - 85x - 131 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.418...416.24t2912.a.a $16$ $ 2^{24} \cdot 3^{8} \cdot 11^{14}$ x9 - x8 - 2x7 + 5x6 - 10x5 + 6x4 + 24x3 - 20x2 - 8x + 24 $S_3\wr S_3$ $1$ $0$
16.447...864.24t2912.a.a $16$ $ 2^{44} \cdot 3^{26}$ x9 - 3x6 + 3x5 - 3x4 - 6x2 + 6x - 2 $S_3\wr S_3$ $1$ $0$
16.450...000.24t1334.a.a $16$ $ 2^{62} \cdot 5^{10}$ x9 - 4x8 + 4x7 - 8x6 - 10x5 + 48x4 - 28x3 + 40x2 - 47x - 12 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.525...625.24t1334.a.a $16$ $ 3^{8} \cdot 5^{10} \cdot 31^{10}$ x9 - 3x8 - 9x7 - 4x6 + 90x5 - 14x4 - 192x3 - 55x2 + 113x + 46 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.544...000.36t1252.a.a $16$ $ 2^{12} \cdot 3^{20} \cdot 5^{18}$ x6 - 3x5 + 5x3 - 5 $S_6$ $1$ $0$
16.555...881.24t1334.a.a $16$ $ 3^{14} \cdot 7^{8} \cdot 17^{10}$ x9 - 2x8 - 14x7 + 52x6 - 62x5 + 49x4 - 101x3 + 181x2 - 161x + 63 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.565...656.24t2912.a.a $16$ $ 2^{38} \cdot 3^{30}$ x9 - 3x8 + 6x7 - 12x6 + 12x5 - 6x4 + 12x3 + 6x2 - 3x - 17 $S_3\wr S_3$ $1$ $0$
16.640...000.36t1252.a.a $16$ $ 2^{30} \cdot 5^{24}$ x6 - 3x5 + 5x4 - 5x3 + 10x2 - 4x - 8 $S_6$ $1$ $0$
16.641...936.36t1252.b.a $16$ $ 2^{24} \cdot 3^{8} \cdot 17^{12}$ x6 - 2x4 - 10x3 - 11x2 + 6x + 5 $S_6$ $1$ $0$
16.652...281.24t1334.a.a $16$ $ 3^{18} \cdot 17^{14}$ x9 - 3x8 - 3x5 + 6x3 + 33x2 + 27x - 7 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.101...625.24t1334.a.a $16$ $ 3^{34} \cdot 5^{14}$ x9 - 9x7 - 15x6 + 63x4 + 120x3 + 108x2 + 45x + 10 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.129...000.36t1252.a.a $16$ $ 2^{12} \cdot 3^{12} \cdot 5^{24}$ x6 - 3x5 + 5x3 + 12x + 4 $S_6$ $1$ $0$
16.133...504.17t6.a.a $16$ $ 2^{30} \cdot 137^{8}$ x17 - 3x16 - 4x14 + 12x13 + 24x12 + 12x11 - 28x10 - 90x9 - 74x8 + 116x6 + 132x5 + 72x4 + 28x3 + 12x2 + 5x + 1 $\PSL(2,16)$ $1$ $0$
16.146...000.24t1334.a.a $16$ $ 2^{32} \cdot 3^{20} \cdot 5^{10}$ x9 - 2x8 + 6x7 - 16x6 + 20x5 - 36x4 + 38x3 + 20x2 - 27x - 6 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.158...000.24t1334.a.a $16$ $ 2^{26} \cdot 3^{18} \cdot 5^{14}$ x9 - 6x7 - 18x6 + 12x5 + 72x4 + 90x3 - 72x2 - 126x - 36 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.166...936.24t1334.b.a $16$ $ 2^{10} \cdot 3^{18} \cdot 29^{10}$ x9 - 3x8 - 21x7 + 72x6 + 60x5 - 219x4 - 213x3 + 309x2 - 120x + 3 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.166...936.24t1334.a.a $16$ $ 2^{10} \cdot 3^{18} \cdot 29^{10}$ x9 - 15x7 + 75x5 - 9x3 - 1044x2 + 2088x - 1044 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
16.182...281.24t1334.a.a $16$ $ 3^{28} \cdot 41^{8}$ x9 - 3x8 + 3x7 - 6x6 + 12x5 - 21x4 + 39x3 - 39x2 + 3x + 10 $((C_3^2:Q_8):C_3):C_2$ $1$ $0$
Next