Learn more

Refine search


Results (1-50 of at least 1000)

Next
Galois conjugate representations are grouped into single lines.
Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
1.10039112.4t1.a.a 1.10039112.4t1.a.b $1$ $ 2^{3} \cdot 17 \cdot 97 \cdot 761 $ 4.4.166192436315349056.1 $C_4$ $0$ $1$
1.10085623.2t1.a.a $1$ $ 10085623 $ \(\Q(\sqrt{-10085623}) \) $C_2$ $1$ $-1$
1.10087976.2t1.a.a $1$ $ 2^{3} \cdot 37 \cdot 173 \cdot 197 $ \(\Q(\sqrt{-2521994}) \) $C_2$ $1$ $-1$
1.10139839.2t1.a.a $1$ $ 619 \cdot 16381 $ \(\Q(\sqrt{-10139839}) \) $C_2$ $1$ $-1$
1.10156007.2t1.a.a $1$ $ 10156007 $ \(\Q(\sqrt{-10156007}) \) $C_2$ $1$ $-1$
1.10185743.2t1.a.a $1$ $ 1531 \cdot 6653 $ \(\Q(\sqrt{-10185743}) \) $C_2$ $1$ $-1$
1.10198091.2t1.a.a $1$ $ 59 \cdot 172849 $ \(\Q(\sqrt{-10198091}) \) $C_2$ $1$ $-1$
1.10313387.2t1.a.a $1$ $ 7 \cdot 1473341 $ \(\Q(\sqrt{-10313387}) \) $C_2$ $1$ $-1$
1.10333303.2t1.a.a $1$ $ 211 \cdot 48973 $ \(\Q(\sqrt{-10333303}) \) $C_2$ $1$ $-1$
1.10373983.2t1.a.a $1$ $ 691 \cdot 15013 $ \(\Q(\sqrt{-10373983}) \) $C_2$ $1$ $-1$
1.10450447.2t1.a.a $1$ $ 7 \cdot 83 \cdot 17987 $ \(\Q(\sqrt{-10450447}) \) $C_2$ $1$ $-1$
1.10463384.2t1.a.a $1$ $ 2^{3} \cdot 1307923 $ \(\Q(\sqrt{-2615846}) \) $C_2$ $1$ $-1$
1.10499147.2t1.a.a $1$ $ 10499147 $ \(\Q(\sqrt{-10499147}) \) $C_2$ $1$ $-1$
1.10523199.2t1.a.a $1$ $ 3 \cdot 433 \cdot 8101 $ \(\Q(\sqrt{-10523199}) \) $C_2$ $1$ $-1$
1.10527443.2t1.a.a $1$ $ 53 \cdot 139 \cdot 1429 $ \(\Q(\sqrt{-10527443}) \) $C_2$ $1$ $-1$
1.10549799.2t1.a.a $1$ $ 13 \cdot 811523 $ \(\Q(\sqrt{-10549799}) \) $C_2$ $1$ $-1$
1.10590020.2t1.a.a $1$ $ 2^{2} \cdot 5 \cdot 7 \cdot 67 \cdot 1129 $ \(\Q(\sqrt{-2647505}) \) $C_2$ $1$ $-1$
1.10591927.2t1.a.a $1$ $ 127 \cdot 83401 $ \(\Q(\sqrt{-10591927}) \) $C_2$ $1$ $-1$
1.10653287.2t1.a.a $1$ $ 10653287 $ \(\Q(\sqrt{-10653287}) \) $C_2$ $1$ $-1$
1.10665079.2t1.a.a $1$ $ 79 \cdot 127 \cdot 1063 $ \(\Q(\sqrt{-10665079}) \) $C_2$ $1$ $-1$
1.10679831.2t1.a.a $1$ $ 10679831 $ \(\Q(\sqrt{-10679831}) \) $C_2$ $1$ $-1$
1.10742807.2t1.a.a $1$ $ 10742807 $ \(\Q(\sqrt{-10742807}) \) $C_2$ $1$ $-1$
1.10773227.2t1.a.a $1$ $ 1613 \cdot 6679 $ \(\Q(\sqrt{-10773227}) \) $C_2$ $1$ $-1$
1.10810636.2t1.a.a $1$ $ 2^{2} \cdot 101 \cdot 26759 $ \(\Q(\sqrt{2702659}) \) $C_2$ $1$ $1$
1.10824271.2t1.a.a $1$ $ 101 \cdot 107171 $ \(\Q(\sqrt{-10824271}) \) $C_2$ $1$ $-1$
1.10842191.2t1.a.a $1$ $ 10842191 $ \(\Q(\sqrt{-10842191}) \) $C_2$ $1$ $-1$
1.10907521.2t1.a.a $1$ $ 109 \cdot 100069 $ \(\Q(\sqrt{10907521}) \) $C_2$ $1$ $1$
1.10928123.2t1.a.a $1$ $ 53 \cdot 206191 $ \(\Q(\sqrt{-10928123}) \) $C_2$ $1$ $-1$
1.10933427.2t1.a.a $1$ $ 173 \cdot 63199 $ \(\Q(\sqrt{-10933427}) \) $C_2$ $1$ $-1$
1.11024791.2t1.a.a $1$ $ 11024791 $ \(\Q(\sqrt{-11024791}) \) $C_2$ $1$ $-1$
1.11025561.2t1.a.a $1$ $ 3 \cdot 3675187 $ \(\Q(\sqrt{11025561}) \) $C_2$ $1$ $1$
1.11029607.2t1.a.a $1$ $ 67 \cdot 164621 $ \(\Q(\sqrt{-11029607}) \) $C_2$ $1$ $-1$
1.11054807.2t1.a.a $1$ $ 1733 \cdot 6379 $ \(\Q(\sqrt{-11054807}) \) $C_2$ $1$ $-1$
1.11118873.2t1.a.a $1$ $ 3 \cdot 383 \cdot 9677 $ \(\Q(\sqrt{11118873}) \) $C_2$ $1$ $1$
1.11122367.2t1.a.a $1$ $ 167 \cdot 66601 $ \(\Q(\sqrt{-11122367}) \) $C_2$ $1$ $-1$
1.11144743.2t1.a.a $1$ $ 41 \cdot 229 \cdot 1187 $ \(\Q(\sqrt{-11144743}) \) $C_2$ $1$ $-1$
1.11204567.2t1.a.a $1$ $ 11 \cdot 97 \cdot 10501 $ \(\Q(\sqrt{-11204567}) \) $C_2$ $1$ $-1$
1.11236111.2t1.a.a $1$ $ 11236111 $ \(\Q(\sqrt{-11236111}) \) $C_2$ $1$ $-1$
1.11257144.2t1.a.a $1$ $ 2^{3} \cdot 1407143 $ \(\Q(\sqrt{-2814286}) \) $C_2$ $1$ $-1$
1.11274103.2t1.a.a $1$ $ 11274103 $ \(\Q(\sqrt{-11274103}) \) $C_2$ $1$ $-1$
1.11302687.2t1.a.a $1$ $ 11 \cdot 691 \cdot 1487 $ \(\Q(\sqrt{-11302687}) \) $C_2$ $1$ $-1$
1.11309831.2t1.a.a $1$ $ 13 \cdot 113 \cdot 7699 $ \(\Q(\sqrt{-11309831}) \) $C_2$ $1$ $-1$
1.11311252.2t1.a.a $1$ $ 2^{2} \cdot 2827813 $ \(\Q(\sqrt{-2827813}) \) $C_2$ $1$ $-1$
1.11327455.2t1.a.a $1$ $ 5 \cdot 367 \cdot 6173 $ \(\Q(\sqrt{-11327455}) \) $C_2$ $1$ $-1$
1.11354599.2t1.a.a $1$ $ 613 \cdot 18523 $ \(\Q(\sqrt{-11354599}) \) $C_2$ $1$ $-1$
1.11412299.2t1.a.a $1$ $ 107 \cdot 106657 $ \(\Q(\sqrt{-11412299}) \) $C_2$ $1$ $-1$
1.11441207.2t1.a.a $1$ $ 11441207 $ \(\Q(\sqrt{-11441207}) \) $C_2$ $1$ $-1$
1.11481271.2t1.a.a $1$ $ 41 \cdot 280031 $ \(\Q(\sqrt{-11481271}) \) $C_2$ $1$ $-1$
1.11553739.2t1.a.a $1$ $ 433 \cdot 26683 $ \(\Q(\sqrt{-11553739}) \) $C_2$ $1$ $-1$
1.11600387.2t1.a.a $1$ $ 1531 \cdot 7577 $ \(\Q(\sqrt{-11600387}) \) $C_2$ $1$ $-1$
Next