⌂
→
Artin representations
→
Search results
Citation
·
Feedback
·
Hide Menu
Artin representation search results
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over $\Q$
Elliptic curves over $\Q(\alpha)$
Genus 2 curves over $\Q$
Higher genus families
Abelian varieties over $\F_{q}$
Fields
Number fields
$p$-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Database
↑
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Artin representations labels
Refine search
Dimension
Conductor
Group
Root number
Parity
even
odd
Smallest permutation
Ramified
include
exactly
subset
Unramified primes
Ramified prime count
Frobenius-Schur
Projective image
Projective image type
Dn
A4
S4
A5
Sort order
Select
Search again
Random representation
▲ dimension
conductor
group
ramified prime count
projective image
columns to display
✓ label
✓ dimension
✓ conductor
ramified prime count
✓ Artin stem field
✓ image
projective image
container
✓ indicator
✓ trace of complex conj.
Results (1-50 of
at least 1000
)
Next
Galois conjugate representations are grouped into single lines.
Label
Dimension
Conductor
Ramified prime count
Artin stem field
$G$
Projective image
Container
Ind
$\chi(c)$
1.100003.2t1.a.a
$1$
$ 100003 $
$1$
\(\Q(\sqrt{-100003}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100005.2t1.a.a
$1$
$ 3 \cdot 5 \cdot 59 \cdot 113 $
$4$
\(\Q(\sqrt{100005}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.100007.2t1.a.a
$1$
$ 97 \cdot 1031 $
$2$
\(\Q(\sqrt{-100007}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100011.2t1.a.a
$1$
$ 3 \cdot 17 \cdot 37 \cdot 53 $
$4$
\(\Q(\sqrt{-100011}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100019.2t1.a.a
$1$
$ 100019 $
$1$
\(\Q(\sqrt{-100019}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100020.2t1.a.a
$1$
$ 2^{2} \cdot 3 \cdot 5 \cdot 1667 $
$4$
\(\Q(\sqrt{-25005}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100023.2t1.a.a
$1$
$ 3 \cdot 7 \cdot 11 \cdot 433 $
$4$
\(\Q(\sqrt{-100023}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100027.2t1.a.a
$1$
$ 23 \cdot 4349 $
$2$
\(\Q(\sqrt{-100027}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100029.2t1.a.a
$1$
$ 3 \cdot 33343 $
$2$
\(\Q(\sqrt{100029}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.100031.2t1.a.a
$1$
$ 67 \cdot 1493 $
$2$
\(\Q(\sqrt{-100031}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100036.2t1.a.a
$1$
$ 2^{2} \cdot 89 \cdot 281 $
$3$
\(\Q(\sqrt{-25009}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100037.2t1.a.a
$1$
$ 7 \cdot 31 \cdot 461 $
$3$
\(\Q(\sqrt{100037}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.100039.2t1.a.a
$1$
$ 71 \cdot 1409 $
$2$
\(\Q(\sqrt{-100039}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100040.2t1.a.a
$1$
$ 2^{3} \cdot 5 \cdot 41 \cdot 61 $
$4$
\(\Q(\sqrt{-25010}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100043.2t1.a.a
$1$
$ 100043 $
$1$
\(\Q(\sqrt{-100043}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100047.2t1.a.a
$1$
$ 3 \cdot 33349 $
$2$
\(\Q(\sqrt{-100047}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100051.2t1.a.a
$1$
$ 7 \cdot 14293 $
$2$
\(\Q(\sqrt{-100051}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100055.2t1.a.a
$1$
$ 5 \cdot 20011 $
$2$
\(\Q(\sqrt{-100055}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100056.2t1.a.a
$1$
$ 2^{3} \cdot 3 \cdot 11 \cdot 379 $
$4$
\(\Q(\sqrt{-25014}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100059.2t1.a.a
$1$
$ 3 \cdot 33353 $
$2$
\(\Q(\sqrt{-100059}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100065.2t1.a.a
$1$
$ 3 \cdot 5 \cdot 7 \cdot 953 $
$4$
\(\Q(\sqrt{100065}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.100068.2t1.a.a
$1$
$ 2^{2} \cdot 3 \cdot 31 \cdot 269 $
$4$
\(\Q(\sqrt{-25017}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100069.2t1.a.a
$1$
$ 100069 $
$1$
\(\Q(\sqrt{100069}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.100083.2t1.a.a
$1$
$ 3 \cdot 73 \cdot 457 $
$3$
\(\Q(\sqrt{-100083}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100088.2t1.a.a
$1$
$ 2^{3} \cdot 12511 $
$2$
\(\Q(\sqrt{-25022}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100091.2t1.a.a
$1$
$ 101 \cdot 991 $
$2$
\(\Q(\sqrt{-100091}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100093.2t1.a.a
$1$
$ 7 \cdot 79 \cdot 181 $
$3$
\(\Q(\sqrt{100093}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.100095.2t1.a.a
$1$
$ 3 \cdot 5 \cdot 6673 $
$3$
\(\Q(\sqrt{-100095}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100099.2t1.a.a
$1$
$ 31 \cdot 3229 $
$2$
\(\Q(\sqrt{-100099}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100101.2t1.a.a
$1$
$ 3 \cdot 61 \cdot 547 $
$3$
\(\Q(\sqrt{100101}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.100103.2t1.a.a
$1$
$ 100103 $
$1$
\(\Q(\sqrt{-100103}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100104.2t1.a.a
$1$
$ 2^{3} \cdot 3 \cdot 43 \cdot 97 $
$4$
\(\Q(\sqrt{25026}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.100104.2t1.b.a
$1$
$ 2^{3} \cdot 3 \cdot 43 \cdot 97 $
$4$
\(\Q(\sqrt{-25026}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100109.2t1.a.a
$1$
$ 100109 $
$1$
\(\Q(\sqrt{100109}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.100113.2t1.a.a
$1$
$ 3 \cdot 13 \cdot 17 \cdot 151 $
$4$
\(\Q(\sqrt{100113}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.100115.2t1.a.a
$1$
$ 5 \cdot 20023 $
$2$
\(\Q(\sqrt{-100115}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100119.2t1.a.a
$1$
$ 3 \cdot 23 \cdot 1451 $
$3$
\(\Q(\sqrt{-100119}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100120.2t1.a.a
$1$
$ 2^{3} \cdot 5 \cdot 2503 $
$3$
\(\Q(\sqrt{-25030}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100123.2t1.a.a
$1$
$ 59 \cdot 1697 $
$2$
\(\Q(\sqrt{-100123}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100124.2t1.a.a
$1$
$ 2^{2} \cdot 25031 $
$2$
\(\Q(\sqrt{25031}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.100131.2t1.a.a
$1$
$ 3 \cdot 33377 $
$2$
\(\Q(\sqrt{-100131}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100133.2t1.a.a
$1$
$ 11 \cdot 9103 $
$2$
\(\Q(\sqrt{100133}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.100136.2t1.a.a
$1$
$ 2^{3} \cdot 12517 $
$2$
\(\Q(\sqrt{-25034}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100139.2t1.a.a
$1$
$ 13 \cdot 7703 $
$2$
\(\Q(\sqrt{-100139}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100141.2t1.a.a
$1$
$ 239 \cdot 419 $
$2$
\(\Q(\sqrt{100141}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.100147.2t1.a.a
$1$
$ 17 \cdot 43 \cdot 137 $
$3$
\(\Q(\sqrt{-100147}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100155.2t1.a.a
$1$
$ 3 \cdot 5 \cdot 11 \cdot 607 $
$4$
\(\Q(\sqrt{-100155}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100163.2t1.a.a
$1$
$ 7 \cdot 41 \cdot 349 $
$3$
\(\Q(\sqrt{-100163}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100164.2t1.a.a
$1$
$ 2^{2} \cdot 3 \cdot 17 \cdot 491 $
$4$
\(\Q(\sqrt{-25041}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.100167.2t1.a.a
$1$
$ 3 \cdot 173 \cdot 193 $
$3$
\(\Q(\sqrt{-100167}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
Next