Learn more

Refine search


Results (1-50 of at least 1000)

Next
Galois conjugate representations are grouped into single lines.
Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
1.100003.2t1.a.a $1$ $ 100003 $ \(\Q(\sqrt{-100003}) \) $C_2$ $1$ $-1$
1.100005.2t1.a.a $1$ $ 3 \cdot 5 \cdot 59 \cdot 113 $ \(\Q(\sqrt{100005}) \) $C_2$ $1$ $1$
1.100007.2t1.a.a $1$ $ 97 \cdot 1031 $ \(\Q(\sqrt{-100007}) \) $C_2$ $1$ $-1$
1.100011.2t1.a.a $1$ $ 3 \cdot 17 \cdot 37 \cdot 53 $ \(\Q(\sqrt{-100011}) \) $C_2$ $1$ $-1$
1.100019.2t1.a.a $1$ $ 100019 $ \(\Q(\sqrt{-100019}) \) $C_2$ $1$ $-1$
1.100020.2t1.a.a $1$ $ 2^{2} \cdot 3 \cdot 5 \cdot 1667 $ \(\Q(\sqrt{-25005}) \) $C_2$ $1$ $-1$
1.100023.2t1.a.a $1$ $ 3 \cdot 7 \cdot 11 \cdot 433 $ \(\Q(\sqrt{-100023}) \) $C_2$ $1$ $-1$
1.100027.2t1.a.a $1$ $ 23 \cdot 4349 $ \(\Q(\sqrt{-100027}) \) $C_2$ $1$ $-1$
1.100029.2t1.a.a $1$ $ 3 \cdot 33343 $ \(\Q(\sqrt{100029}) \) $C_2$ $1$ $1$
1.100031.2t1.a.a $1$ $ 67 \cdot 1493 $ \(\Q(\sqrt{-100031}) \) $C_2$ $1$ $-1$
1.100036.2t1.a.a $1$ $ 2^{2} \cdot 89 \cdot 281 $ \(\Q(\sqrt{-25009}) \) $C_2$ $1$ $-1$
1.100037.2t1.a.a $1$ $ 7 \cdot 31 \cdot 461 $ \(\Q(\sqrt{100037}) \) $C_2$ $1$ $1$
1.100039.2t1.a.a $1$ $ 71 \cdot 1409 $ \(\Q(\sqrt{-100039}) \) $C_2$ $1$ $-1$
1.100040.2t1.a.a $1$ $ 2^{3} \cdot 5 \cdot 41 \cdot 61 $ \(\Q(\sqrt{-25010}) \) $C_2$ $1$ $-1$
1.100043.2t1.a.a $1$ $ 100043 $ \(\Q(\sqrt{-100043}) \) $C_2$ $1$ $-1$
1.100047.2t1.a.a $1$ $ 3 \cdot 33349 $ \(\Q(\sqrt{-100047}) \) $C_2$ $1$ $-1$
1.100051.2t1.a.a $1$ $ 7 \cdot 14293 $ \(\Q(\sqrt{-100051}) \) $C_2$ $1$ $-1$
1.100055.2t1.a.a $1$ $ 5 \cdot 20011 $ \(\Q(\sqrt{-100055}) \) $C_2$ $1$ $-1$
1.100056.2t1.a.a $1$ $ 2^{3} \cdot 3 \cdot 11 \cdot 379 $ \(\Q(\sqrt{-25014}) \) $C_2$ $1$ $-1$
1.100059.2t1.a.a $1$ $ 3 \cdot 33353 $ \(\Q(\sqrt{-100059}) \) $C_2$ $1$ $-1$
1.100065.2t1.a.a $1$ $ 3 \cdot 5 \cdot 7 \cdot 953 $ \(\Q(\sqrt{100065}) \) $C_2$ $1$ $1$
1.100068.2t1.a.a $1$ $ 2^{2} \cdot 3 \cdot 31 \cdot 269 $ \(\Q(\sqrt{-25017}) \) $C_2$ $1$ $-1$
1.100069.2t1.a.a $1$ $ 100069 $ \(\Q(\sqrt{100069}) \) $C_2$ $1$ $1$
1.100083.2t1.a.a $1$ $ 3 \cdot 73 \cdot 457 $ \(\Q(\sqrt{-100083}) \) $C_2$ $1$ $-1$
1.100088.2t1.a.a $1$ $ 2^{3} \cdot 12511 $ \(\Q(\sqrt{-25022}) \) $C_2$ $1$ $-1$
1.100091.2t1.a.a $1$ $ 101 \cdot 991 $ \(\Q(\sqrt{-100091}) \) $C_2$ $1$ $-1$
1.100093.2t1.a.a $1$ $ 7 \cdot 79 \cdot 181 $ \(\Q(\sqrt{100093}) \) $C_2$ $1$ $1$
1.100095.2t1.a.a $1$ $ 3 \cdot 5 \cdot 6673 $ \(\Q(\sqrt{-100095}) \) $C_2$ $1$ $-1$
1.100099.2t1.a.a $1$ $ 31 \cdot 3229 $ \(\Q(\sqrt{-100099}) \) $C_2$ $1$ $-1$
1.100101.2t1.a.a $1$ $ 3 \cdot 61 \cdot 547 $ \(\Q(\sqrt{100101}) \) $C_2$ $1$ $1$
1.100103.2t1.a.a $1$ $ 100103 $ \(\Q(\sqrt{-100103}) \) $C_2$ $1$ $-1$
1.100104.2t1.a.a $1$ $ 2^{3} \cdot 3 \cdot 43 \cdot 97 $ \(\Q(\sqrt{25026}) \) $C_2$ $1$ $1$
1.100104.2t1.b.a $1$ $ 2^{3} \cdot 3 \cdot 43 \cdot 97 $ \(\Q(\sqrt{-25026}) \) $C_2$ $1$ $-1$
1.100109.2t1.a.a $1$ $ 100109 $ \(\Q(\sqrt{100109}) \) $C_2$ $1$ $1$
1.100113.2t1.a.a $1$ $ 3 \cdot 13 \cdot 17 \cdot 151 $ \(\Q(\sqrt{100113}) \) $C_2$ $1$ $1$
1.100115.2t1.a.a $1$ $ 5 \cdot 20023 $ \(\Q(\sqrt{-100115}) \) $C_2$ $1$ $-1$
1.100119.2t1.a.a $1$ $ 3 \cdot 23 \cdot 1451 $ \(\Q(\sqrt{-100119}) \) $C_2$ $1$ $-1$
1.100120.2t1.a.a $1$ $ 2^{3} \cdot 5 \cdot 2503 $ \(\Q(\sqrt{-25030}) \) $C_2$ $1$ $-1$
1.100123.2t1.a.a $1$ $ 59 \cdot 1697 $ \(\Q(\sqrt{-100123}) \) $C_2$ $1$ $-1$
1.100124.2t1.a.a $1$ $ 2^{2} \cdot 25031 $ \(\Q(\sqrt{25031}) \) $C_2$ $1$ $1$
1.100131.2t1.a.a $1$ $ 3 \cdot 33377 $ \(\Q(\sqrt{-100131}) \) $C_2$ $1$ $-1$
1.100133.2t1.a.a $1$ $ 11 \cdot 9103 $ \(\Q(\sqrt{100133}) \) $C_2$ $1$ $1$
1.100136.2t1.a.a $1$ $ 2^{3} \cdot 12517 $ \(\Q(\sqrt{-25034}) \) $C_2$ $1$ $-1$
1.100139.2t1.a.a $1$ $ 13 \cdot 7703 $ \(\Q(\sqrt{-100139}) \) $C_2$ $1$ $-1$
1.100141.2t1.a.a $1$ $ 239 \cdot 419 $ \(\Q(\sqrt{100141}) \) $C_2$ $1$ $1$
1.100147.2t1.a.a $1$ $ 17 \cdot 43 \cdot 137 $ \(\Q(\sqrt{-100147}) \) $C_2$ $1$ $-1$
1.100155.2t1.a.a $1$ $ 3 \cdot 5 \cdot 11 \cdot 607 $ \(\Q(\sqrt{-100155}) \) $C_2$ $1$ $-1$
1.100163.2t1.a.a $1$ $ 7 \cdot 41 \cdot 349 $ \(\Q(\sqrt{-100163}) \) $C_2$ $1$ $-1$
1.100164.2t1.a.a $1$ $ 2^{2} \cdot 3 \cdot 17 \cdot 491 $ \(\Q(\sqrt{-25041}) \) $C_2$ $1$ $-1$
1.100167.2t1.a.a $1$ $ 3 \cdot 173 \cdot 193 $ \(\Q(\sqrt{-100167}) \) $C_2$ $1$ $-1$
Next