Learn more

Refine search


Results (1-50 of at least 1000)

Next
Galois conjugate representations are grouped into single lines.
Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
1.1001.2t1.a.a $1$ $ 7 \cdot 11 \cdot 13 $ \(\Q(\sqrt{1001}) \) $C_2$ $1$ $1$
1.1001.4t1.a.a 1.1001.4t1.a.b $1$ $ 7 \cdot 11 \cdot 13 $ 4.0.13026013.2 $C_4$ $0$ $-1$
1.1001.6t1.b.a 1.1001.6t1.b.b $1$ $ 7 \cdot 11 \cdot 13 $ 6.0.7021021007.3 $C_6$ $0$ $-1$
1.1001.6t1.a.a 1.1001.6t1.a.b $1$ $ 7 \cdot 11 \cdot 13 $ 6.0.91273273091.4 $C_6$ $0$ $-1$
1.1001.6t1.c.a 1.1001.6t1.c.b $1$ $ 7 \cdot 11 \cdot 13 $ 6.0.91273273091.5 $C_6$ $0$ $-1$
1.1003.2t1.a.a $1$ $ 17 \cdot 59 $ \(\Q(\sqrt{-1003}) \) $C_2$ $1$ $-1$
1.1003.4t1.a.a 1.1003.4t1.a.b $1$ $ 17 \cdot 59 $ 4.0.17102153.2 $C_4$ $0$ $-1$
1.1004.2t1.a.a $1$ $ 2^{2} \cdot 251 $ \(\Q(\sqrt{251}) \) $C_2$ $1$ $1$
1.1005.2t1.a.a $1$ $ 3 \cdot 5 \cdot 67 $ \(\Q(\sqrt{1005}) \) $C_2$ $1$ $1$
1.1005.4t1.a.a 1.1005.4t1.a.b $1$ $ 3 \cdot 5 \cdot 67 $ 4.0.5050125.1 $C_4$ $0$ $-1$
1.1007.2t1.a.a $1$ $ 19 \cdot 53 $ \(\Q(\sqrt{-1007}) \) $C_2$ $1$ $-1$
1.1007.6t1.a.a 1.1007.6t1.a.b $1$ $ 19 \cdot 53 $ 6.0.368634190823.2 $C_6$ $0$ $-1$
1.1009.2t1.a.a $1$ $ 1009 $ \(\Q(\sqrt{1009}) \) $C_2$ $1$ $1$
1.1009.3t1.a.a 1.1009.3t1.a.b $1$ $ 1009 $ 3.3.1018081.1 $C_3$ $0$ $1$
1.1009.4t1.a.a 1.1009.4t1.a.b $1$ $ 1009 $ 4.4.1027243729.1 $C_4$ $0$ $1$
1.1011.2t1.a.a $1$ $ 3 \cdot 337 $ \(\Q(\sqrt{-1011}) \) $C_2$ $1$ $-1$
1.1011.4t1.a.a 1.1011.4t1.a.b $1$ $ 3 \cdot 337 $ 4.0.344454777.2 $C_4$ $0$ $-1$
1.1011.14t1.a.a 1.1011.14t1.a.b 1.1011.14t1.a.c 1.1011.14t1.a.d 1.1011.14t1.a.e 1.1011.14t1.a.f $1$ $ 3 \cdot 337 $ 14.0.4692535788065246220336970873011147.1 $C_{14}$ $0$ $-1$
1.1012.2t1.a.a $1$ $ 2^{2} \cdot 11 \cdot 23 $ \(\Q(\sqrt{-253}) \) $C_2$ $1$ $-1$
1.1012.10t1.a.a 1.1012.10t1.a.b 1.1012.10t1.a.c 1.1012.10t1.a.d $1$ $ 2^{2} \cdot 11 \cdot 23 $ 10.10.1412799778009275392.1 $C_{10}$ $0$ $1$
1.1013.2t1.a.a $1$ $ 1013 $ \(\Q(\sqrt{1013}) \) $C_2$ $1$ $1$
1.1013.4t1.a.a 1.1013.4t1.a.b $1$ $ 1013 $ 4.0.1039509197.1 $C_4$ $0$ $-1$
1.1015.2t1.a.a $1$ $ 5 \cdot 7 \cdot 29 $ \(\Q(\sqrt{-1015}) \) $C_2$ $1$ $-1$
1.1015.4t1.a.a 1.1015.4t1.a.b $1$ $ 5 \cdot 7 \cdot 29 $ 4.4.5151125.2 $C_4$ $0$ $1$
1.1015.4t1.b.a 1.1015.4t1.b.b $1$ $ 5 \cdot 7 \cdot 29 $ 4.0.149382625.1 $C_4$ $0$ $-1$
1.1015.4t1.c.a 1.1015.4t1.c.b $1$ $ 5 \cdot 7 \cdot 29 $ 4.0.149382625.2 $C_4$ $0$ $-1$
1.1015.6t1.a.a 1.1015.6t1.a.b $1$ $ 5 \cdot 7 \cdot 29 $ 6.0.51238240375.2 $C_6$ $0$ $-1$
1.1016.2t1.a.a $1$ $ 2^{3} \cdot 127 $ \(\Q(\sqrt{254}) \) $C_2$ $1$ $1$
1.1016.2t1.b.a $1$ $ 2^{3} \cdot 127 $ \(\Q(\sqrt{-254}) \) $C_2$ $1$ $-1$
1.1017.6t1.a.a 1.1017.6t1.a.b $1$ $ 3^{2} \cdot 113 $ 6.0.28400541651.3 $C_6$ $0$ $-1$
1.1019.2t1.a.a $1$ $ 1019 $ \(\Q(\sqrt{-1019}) \) $C_2$ $1$ $-1$
1.1020.2t1.a.a $1$ $ 2^{2} \cdot 3 \cdot 5 \cdot 17 $ \(\Q(\sqrt{255}) \) $C_2$ $1$ $1$
1.1020.4t1.c.a 1.1020.4t1.c.b $1$ $ 2^{2} \cdot 3 \cdot 5 \cdot 17 $ 4.0.5202000.2 $C_4$ $0$ $-1$
1.1020.4t1.b.a 1.1020.4t1.b.b $1$ $ 2^{2} \cdot 3 \cdot 5 \cdot 17 $ 4.0.88434000.2 $C_4$ $0$ $-1$
1.1020.4t1.a.a 1.1020.4t1.a.b $1$ $ 2^{2} \cdot 3 \cdot 5 \cdot 17 $ 4.0.88434000.1 $C_4$ $0$ $-1$
1.1021.2t1.a.a $1$ $ 1021 $ \(\Q(\sqrt{1021}) \) $C_2$ $1$ $1$
1.1021.3t1.a.a 1.1021.3t1.a.b $1$ $ 1021 $ 3.3.1042441.1 $C_3$ $0$ $1$
1.1023.2t1.a.a $1$ $ 3 \cdot 11 \cdot 31 $ \(\Q(\sqrt{-1023}) \) $C_2$ $1$ $-1$
1.1023.6t1.a.a 1.1023.6t1.a.b $1$ $ 3 \cdot 11 \cdot 31 $ 6.6.33188574177.1 $C_6$ $0$ $1$
1.1027.2t1.a.a $1$ $ 13 \cdot 79 $ \(\Q(\sqrt{-1027}) \) $C_2$ $1$ $-1$
1.1027.3t1.b.a 1.1027.3t1.b.b $1$ $ 13 \cdot 79 $ 3.3.1054729.2 $C_3$ $0$ $1$
1.1027.3t1.a.a 1.1027.3t1.a.b $1$ $ 13 \cdot 79 $ 3.3.1054729.1 $C_3$ $0$ $1$
1.1027.4t1.a.a 1.1027.4t1.a.b $1$ $ 13 \cdot 79 $ 4.4.13711477.1 $C_4$ $0$ $1$
1.1027.6t1.b.a 1.1027.6t1.b.b $1$ $ 13 \cdot 79 $ 6.0.14081686879.2 $C_6$ $0$ $-1$
1.1027.6t1.a.a 1.1027.6t1.a.b $1$ $ 13 \cdot 79 $ 6.6.85573327957.2 $C_6$ $0$ $1$
1.1028.2t1.a.a $1$ $ 2^{2} \cdot 257 $ \(\Q(\sqrt{-257}) \) $C_2$ $1$ $-1$
1.1031.2t1.a.a $1$ $ 1031 $ \(\Q(\sqrt{-1031}) \) $C_2$ $1$ $-1$
1.1032.2t1.b.a $1$ $ 2^{3} \cdot 3 \cdot 43 $ \(\Q(\sqrt{-258}) \) $C_2$ $1$ $-1$
1.1032.2t1.a.a $1$ $ 2^{3} \cdot 3 \cdot 43 $ \(\Q(\sqrt{258}) \) $C_2$ $1$ $1$
1.1032.6t1.b.a 1.1032.6t1.b.b $1$ $ 2^{3} \cdot 3 \cdot 43 $ 6.0.47261505024.3 $C_6$ $0$ $-1$
Next