⌂
→
Artin representations
→
Search results
Citation
·
Feedback
·
Hide Menu
Artin representation search results
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over $\Q$
Elliptic curves over $\Q(\alpha)$
Genus 2 curves over $\Q$
Higher genus families
Abelian varieties over $\F_{q}$
Fields
Number fields
$p$-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Database
↑
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Artin representations labels
Refine search
Dimension
Conductor
Group
Root number
Parity
even
odd
Smallest permutation
Ramified
include
exactly
subset
Unramified primes
Ramified prime count
Frobenius-Schur
Projective image
Projective image type
Dn
A4
S4
A5
Sort order
Select
Search again
Random representation
▲ dimension
conductor
group
ramified prime count
projective image
columns to display
✓ label
✓ dimension
✓ conductor
ramified prime count
✓ Artin stem field
✓ image
projective image
container
✓ indicator
✓ trace of complex conj.
show all
Results (1-50 of 25573 matches)
Next
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
Galois conjugate representations are grouped into single lines.
Label
Dimension
Conductor
Ramified prime count
Artin stem field
$G$
Projective image
Container
Ind
$\chi(c)$
1.1001.2t1.a.a
$1$
$ 7 \cdot 11 \cdot 13 $
$3$
\(\Q(\sqrt{1001}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1001.4t1.a.a
1.1001.4t1.a.b
$1$
$ 7 \cdot 11 \cdot 13 $
$3$
4.0.13026013.2
$C_4$
$C_1$
$C_4$
$0$
$-1$
1.1001.6t1.a.a
1.1001.6t1.a.b
$1$
$ 7 \cdot 11 \cdot 13 $
$3$
6.0.91273273091.4
$C_6$
$C_1$
$C_6$
$0$
$-1$
1.1001.6t1.b.a
1.1001.6t1.b.b
$1$
$ 7 \cdot 11 \cdot 13 $
$3$
6.0.7021021007.3
$C_6$
$C_1$
$C_6$
$0$
$-1$
1.1001.6t1.c.a
1.1001.6t1.c.b
$1$
$ 7 \cdot 11 \cdot 13 $
$3$
6.0.91273273091.5
$C_6$
$C_1$
$C_6$
$0$
$-1$
1.1003.2t1.a.a
$1$
$ 17 \cdot 59 $
$2$
\(\Q(\sqrt{-1003}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.1003.4t1.a.a
1.1003.4t1.a.b
$1$
$ 17 \cdot 59 $
$2$
4.0.17102153.2
$C_4$
$C_1$
$C_4$
$0$
$-1$
1.1004.2t1.a.a
$1$
$ 2^{2} \cdot 251 $
$2$
\(\Q(\sqrt{251}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1005.2t1.a.a
$1$
$ 3 \cdot 5 \cdot 67 $
$3$
\(\Q(\sqrt{1005}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1005.4t1.a.a
1.1005.4t1.a.b
$1$
$ 3 \cdot 5 \cdot 67 $
$3$
4.0.5050125.1
$C_4$
$C_1$
$C_4$
$0$
$-1$
1.1007.2t1.a.a
$1$
$ 19 \cdot 53 $
$2$
\(\Q(\sqrt{-1007}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.1007.6t1.a.a
1.1007.6t1.a.b
$1$
$ 19 \cdot 53 $
$2$
6.0.368634190823.2
$C_6$
$C_1$
$C_6$
$0$
$-1$
1.1009.2t1.a.a
$1$
$ 1009 $
$1$
\(\Q(\sqrt{1009}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1009.3t1.a.a
1.1009.3t1.a.b
$1$
$ 1009 $
$1$
3.3.1018081.1
$C_3$
$C_1$
$C_3$
$0$
$1$
1.1009.4t1.a.a
1.1009.4t1.a.b
$1$
$ 1009 $
$1$
4.4.1027243729.1
$C_4$
$C_1$
$C_4$
$0$
$1$
1.1011.2t1.a.a
$1$
$ 3 \cdot 337 $
$2$
\(\Q(\sqrt{-1011}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.1011.4t1.a.a
1.1011.4t1.a.b
$1$
$ 3 \cdot 337 $
$2$
4.0.344454777.2
$C_4$
$C_1$
$C_4$
$0$
$-1$
1.1011.14t1.a.a
1.1011.14t1.a.b
1.1011.14t1.a.c
1.1011.14t1.a.d
1.1011.14t1.a.e
1.1011.14t1.a.f
$1$
$ 3 \cdot 337 $
$2$
14.0.4692535788065246220336970873011147.1
$C_{14}$
$C_1$
$C_{14}$
$0$
$-1$
1.1012.2t1.a.a
$1$
$ 2^{2} \cdot 11 \cdot 23 $
$3$
\(\Q(\sqrt{-253}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.1012.10t1.a.a
1.1012.10t1.a.b
1.1012.10t1.a.c
1.1012.10t1.a.d
$1$
$ 2^{2} \cdot 11 \cdot 23 $
$3$
10.10.1412799778009275392.1
$C_{10}$
$C_1$
$C_{10}$
$0$
$1$
1.1013.2t1.a.a
$1$
$ 1013 $
$1$
\(\Q(\sqrt{1013}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1013.4t1.a.a
1.1013.4t1.a.b
$1$
$ 1013 $
$1$
4.0.1039509197.1
$C_4$
$C_1$
$C_4$
$0$
$-1$
1.1015.2t1.a.a
$1$
$ 5 \cdot 7 \cdot 29 $
$3$
\(\Q(\sqrt{-1015}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.1015.4t1.a.a
1.1015.4t1.a.b
$1$
$ 5 \cdot 7 \cdot 29 $
$3$
4.4.5151125.2
$C_4$
$C_1$
$C_4$
$0$
$1$
1.1015.4t1.b.a
1.1015.4t1.b.b
$1$
$ 5 \cdot 7 \cdot 29 $
$3$
4.0.149382625.1
$C_4$
$C_1$
$C_4$
$0$
$-1$
1.1015.4t1.c.a
1.1015.4t1.c.b
$1$
$ 5 \cdot 7 \cdot 29 $
$3$
4.0.149382625.2
$C_4$
$C_1$
$C_4$
$0$
$-1$
1.1015.6t1.a.a
1.1015.6t1.a.b
$1$
$ 5 \cdot 7 \cdot 29 $
$3$
6.0.51238240375.2
$C_6$
$C_1$
$C_6$
$0$
$-1$
1.1016.2t1.a.a
$1$
$ 2^{3} \cdot 127 $
$2$
\(\Q(\sqrt{254}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1016.2t1.b.a
$1$
$ 2^{3} \cdot 127 $
$2$
\(\Q(\sqrt{-254}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.1017.6t1.a.a
1.1017.6t1.a.b
$1$
$ 3^{2} \cdot 113 $
$2$
6.0.28400541651.3
$C_6$
$C_1$
$C_6$
$0$
$-1$
1.1019.2t1.a.a
$1$
$ 1019 $
$1$
\(\Q(\sqrt{-1019}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.1020.2t1.a.a
$1$
$ 2^{2} \cdot 3 \cdot 5 \cdot 17 $
$4$
\(\Q(\sqrt{255}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1020.4t1.a.a
1.1020.4t1.a.b
$1$
$ 2^{2} \cdot 3 \cdot 5 \cdot 17 $
$4$
4.0.88434000.1
$C_4$
$C_1$
$C_4$
$0$
$-1$
1.1020.4t1.b.a
1.1020.4t1.b.b
$1$
$ 2^{2} \cdot 3 \cdot 5 \cdot 17 $
$4$
4.0.88434000.2
$C_4$
$C_1$
$C_4$
$0$
$-1$
1.1020.4t1.c.a
1.1020.4t1.c.b
$1$
$ 2^{2} \cdot 3 \cdot 5 \cdot 17 $
$4$
4.0.5202000.2
$C_4$
$C_1$
$C_4$
$0$
$-1$
1.1021.2t1.a.a
$1$
$ 1021 $
$1$
\(\Q(\sqrt{1021}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1021.3t1.a.a
1.1021.3t1.a.b
$1$
$ 1021 $
$1$
3.3.1042441.1
$C_3$
$C_1$
$C_3$
$0$
$1$
1.1023.2t1.a.a
$1$
$ 3 \cdot 11 \cdot 31 $
$3$
\(\Q(\sqrt{-1023}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.1023.6t1.a.a
1.1023.6t1.a.b
$1$
$ 3 \cdot 11 \cdot 31 $
$3$
6.6.33188574177.1
$C_6$
$C_1$
$C_6$
$0$
$1$
1.1027.2t1.a.a
$1$
$ 13 \cdot 79 $
$2$
\(\Q(\sqrt{-1027}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.1027.3t1.a.a
1.1027.3t1.a.b
$1$
$ 13 \cdot 79 $
$2$
3.3.1054729.1
$C_3$
$C_1$
$C_3$
$0$
$1$
1.1027.3t1.b.a
1.1027.3t1.b.b
$1$
$ 13 \cdot 79 $
$2$
3.3.1054729.2
$C_3$
$C_1$
$C_3$
$0$
$1$
1.1027.4t1.a.a
1.1027.4t1.a.b
$1$
$ 13 \cdot 79 $
$2$
4.4.13711477.1
$C_4$
$C_1$
$C_4$
$0$
$1$
1.1027.6t1.a.a
1.1027.6t1.a.b
$1$
$ 13 \cdot 79 $
$2$
6.6.85573327957.2
$C_6$
$C_1$
$C_6$
$0$
$1$
1.1027.6t1.b.a
1.1027.6t1.b.b
$1$
$ 13 \cdot 79 $
$2$
6.0.14081686879.2
$C_6$
$C_1$
$C_6$
$0$
$-1$
1.1028.2t1.a.a
$1$
$ 2^{2} \cdot 257 $
$2$
\(\Q(\sqrt{-257}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.1031.2t1.a.a
$1$
$ 1031 $
$1$
\(\Q(\sqrt{-1031}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.1032.2t1.a.a
$1$
$ 2^{3} \cdot 3 \cdot 43 $
$3$
\(\Q(\sqrt{258}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1032.2t1.b.a
$1$
$ 2^{3} \cdot 3 \cdot 43 $
$3$
\(\Q(\sqrt{-258}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.1032.6t1.a.a
1.1032.6t1.a.b
$1$
$ 2^{3} \cdot 3 \cdot 43 $
$3$
6.6.47261505024.1
$C_6$
$C_1$
$C_6$
$0$
$1$
Next
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV