Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 40 a + 30 + \left(15 a + 7\right)\cdot 67 + \left(28 a + 35\right)\cdot 67^{2} + \left(27 a + 50\right)\cdot 67^{3} + \left(50 a + 10\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 27 a + 56 + \left(51 a + 29\right)\cdot 67 + \left(38 a + 65\right)\cdot 67^{2} + \left(39 a + 64\right)\cdot 67^{3} + \left(16 a + 50\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 23 + 51\cdot 67 + 9\cdot 67^{2} + 24\cdot 67^{3} + 41\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 50 + 61\cdot 67 + 16\cdot 67^{2} + 22\cdot 67^{3} + 53\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 13 a + 62 + \left(40 a + 51\right)\cdot 67 + \left(9 a + 37\right)\cdot 67^{2} + \left(36 a + 52\right)\cdot 67^{3} + \left(47 a + 45\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 54 a + 47 + \left(26 a + 65\right)\cdot 67 + \left(57 a + 35\right)\cdot 67^{2} + \left(30 a + 53\right)\cdot 67^{3} + \left(19 a + 65\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$9$ |
| $15$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$-3$ |
| $15$ |
$2$ |
$(1,2)$ |
$-3$ |
| $45$ |
$2$ |
$(1,2)(3,4)$ |
$1$ |
| $40$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$0$ |
| $40$ |
$3$ |
$(1,2,3)$ |
$0$ |
| $90$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$1$ |
| $90$ |
$4$ |
$(1,2,3,4)$ |
$1$ |
| $144$ |
$5$ |
$(1,2,3,4,5)$ |
$-1$ |
| $120$ |
$6$ |
$(1,2,3,4,5,6)$ |
$0$ |
| $120$ |
$6$ |
$(1,2,3)(4,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.