Properties

Label 9.67e3_3121e3.10t32.1
Dimension 9
Group $S_6$
Conductor $ 67^{3} \cdot 3121^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$9$
Group:$S_6$
Conductor:$9143357780748043= 67^{3} \cdot 3121^{3} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 2 x^{4} + 2 x^{3} - 2 x^{2} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 101 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 101 }$: $ x^{2} + 97 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 80 a + 19 + \left(72 a + 23\right)\cdot 101 + \left(54 a + 70\right)\cdot 101^{2} + \left(76 a + 77\right)\cdot 101^{3} + \left(83 a + 88\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 53 + 92\cdot 101 + 19\cdot 101^{2} + 55\cdot 101^{3} + 98\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 70 + 30\cdot 101 + 41\cdot 101^{2} + 90\cdot 101^{3} + 52\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 38 a + 88 + \left(63 a + 4\right)\cdot 101 + \left(60 a + 90\right)\cdot 101^{2} + \left(19 a + 17\right)\cdot 101^{3} + \left(90 a + 91\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 36 + \left(28 a + 32\right)\cdot 101 + \left(46 a + 14\right)\cdot 101^{2} + \left(24 a + 26\right)\cdot 101^{3} + \left(17 a + 44\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 63 a + 38 + \left(37 a + 18\right)\cdot 101 + \left(40 a + 67\right)\cdot 101^{2} + \left(81 a + 35\right)\cdot 101^{3} + \left(10 a + 28\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $9$
$15$ $2$ $(1,2)(3,4)(5,6)$ $3$
$15$ $2$ $(1,2)$ $3$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $0$
$40$ $3$ $(1,2,3)$ $0$
$90$ $4$ $(1,2,3,4)(5,6)$ $1$
$90$ $4$ $(1,2,3,4)$ $-1$
$144$ $5$ $(1,2,3,4,5)$ $-1$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.